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SUMMARY: Coronal holes (CHs) play an important role in solar physics. They contribute to
geomagnetic storms. The emission of charged particles into interplanetary space influences the space
weather. CHs, being an important part of the solar activity, have a significant influence on Earth’s
climate. So, detection of CH regions is a significant task. Many attempts have already been made
in this regard. In this work, we are proposing a new method for automatic detection of CH regions
using a deep learning technique. We used Supervised Intensity Thresholding with Distance Transform
Clustering and Connected Component Labeling (SITDTCCCL) to find out Regions of Interest (ROI)
on 193 A images collected from the Solar Dynamics Observatory (SDO). The state-of-the-art deep
learning method (YOLO v8) has shown excellent performance in detection of CH regions with scores
of evaluation matrices such as F1 score 95%, Precision 97.1%, mAP50 98.1%, and True Positive Rate
(TPR) 100%.
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1. INTRODUCTION

Significant solar activities like CHs, coronal mass
ejections (CMEs), solar flares, solar prominences, and
solar wind have an impactful contribution to the in-
terplanetary magnetic field (IMF) Gosling and Pizzo
(1999), Odstréil and Pizzo (1999), Cranmer (2009)
and also affect the Earth in various ways. Therefore,
CHs are of great importance to the domain of solar
physics Baek et al. (2021). In the years of solar max-

© 2025 The Author(s). Published by Astronomical Ob-
servatory of Belgrade and Faculty of Mathematics, University
of Belgrade. This open access article is distributed under CC
BY-NC-ND 4.0 International licence.

imum, CMEs contributed greatly to the generation
of solar wind, but in the solar minimum phase, CHs
become the main source of solar wind. Moreover,
CHs can send out the same amount of charged parti-
cles as CMEs throughout their lifetime Gopalswamy
et al. (2009), Krista and Gallagher (2009).

The corona is the outermost layer of the Sun. CHs
are prominent dark patches over the solar corona, ap-
parent on the Atmospheric Imaging Assembly (ATA)
images acquired through extreme ultraviolet (EUV)
and soft X-ray channels Altschuler et al. (1972),
Wang et al. (1996), Antonucci et al. (2004). CHs can
occur anywhere on the Sun and persist for several so-
lar rotations. They can often be observed during the
waning phase of the solar cycle. Polar coronal holes
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tend to be the most common and persistent. Equato-
rial CHs can occur in isolation over a region or spread
out as extensions of polar CHs. Sometimes CHs can
spread from pole to pole, but they are infrequent.

Bright regions manifest on the surface of the so-
lar corona where magnetic field lines are generated
and form loops. CHs present as dark regions due
to the presence of cooler plasma, which is two to
three times less dense than the regions of quiet Sun
Antonucci et al. (2004), has temperature around
10° — 10 K Wilhelm (2006) and is embedded in open
magnetic field Sheeley and Wang (2002), spreading
out into the interplanetary space acting as a source
of a stream of charged particles called the solar wind
Altschuler et al. (1972), Krieger et al. (1973), Has-
sler et al. (1999), Antonucci et al. (2004), Vrsnak
et al. (2007). When a rapid outflow of charged par-
ticles becomes entangled with Earth’s magnetic field,
it leads to diverse effects on our planet. This phe-
nomenon adversely affects Earth’s magnetic shield,
inducing turbulence and altering its shape, poten-
tially gives rise to geomagnetic storms Lakhina and
Tsurutani (2016). This process accelerates Earth’s
atmospheric temperature, and the projected charged
particles instigate auroras in polar regions. A thor-
ough statistical investigation of coronal holes (CHs)
and a detailed analysis of their physical parameters,
such as intensity, area and magnetic polarity are cru-
cial for obtaining a comprehensive understanding of
the solar wind dynamics Robbins et al. (2006) and
its geomagnetic effects Rotter et al. (2015). Identifi-
cation of CHs on the solar disk is an inevitable task
for astronomical research.

2. RELATED WORKS

The rudimentary work of coronal hole detection
was proposed by Harvey and Recely (2002), based
on hand-drawn synoptic maps. Henney and Harvey
(2007) presented an automated coronal hole detec-
tion, an extended version of the work done by Harvey
and Recely (2002), by using the Kitt Peak Vacuum
Telescope (KPVT) 10830 A spectroheliograms and
photospheric magnetograms with unique formations
of the helium lines along with some morphological
operations. Recently, various machine learning-based
automated methods have been proposed for the iden-
tification of CHs. Malanushenko and Jones (2005)
proposed the line half-width and central intensity-
based differentiation techniques between the coronal
holes and the quiet Sun (QS). De Wit (2006) used
the Karhunen—Loéve transform for singular value de-
composition (SVD), used in the multispectral fea-
ture vector-based Bayesian classification for identi-
fication of large-scale solar objects. De Wit (2006)
detected CHs, chromospheric network, and active re-
gions(AR), with a Bayesian classifier-based super-
vised segmentation scheme. Barra et al. (2009) pro-
posed a region-based and unsupervised multispectral
segmentation method using a possibilistic clustering
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algorithm and a context-dependent fusion operator.
Scholl and Habbal (2008) presented an automated
differentiation technique between CHs and filaments
on (SOHO/EIT) images Delaboudiniere et al. (1995)
and the Michelson Doppler Imager (SOHO/MDI) im-
ages Scherrer et al. (1995). Kirk et al. (2009) intro-
duced a new method of computation named perime-
ter tracing to estimate the perimeter of a polar coro-
nal hole. Krista and Gallagher (2009) proposed a
fast and robust histogram-based intensity threshold-
ing technique for the CH segmentation. Barra et al.
(2009) presented a fast and robust segmentation algo-
rithm for identification of CHs, ARs, and QS, which
is a modification of the spatial possibilistic cluster-
ing algorithm (SPoCA). de Toma (2011) proposed a
double thresholding method for identification of large
solar objects. Colak and Qahwaji (2013) presented a
fuzzy algorithm for segmentation of CHs and ARs
from images of the Atmospheric Imaging Assembly
(ATA), Lemen et al. (2012), also used Radial Ba-
sis Function Networks (RBFNs) introduced by Qah-
waji and Colak (2007). Verbeeck et al. (2014) seg-
ment out ARs and CHs according to their intensity
level using a fuzzy clustering scheme, named SPoCA-
suite. Lowder et al. (2017) presented measurements
on CHs and open magnetic flux computed by a poten-
tial field source surface (PFSS) model on the multiple
spectrum. Ciecholewski (2015) used a watershed al-
gorithm to identify CHs. Boucheron et al. (2016)
proposed an extraction and characterization method
of CHs from images obtained by SDO/AIA using
an edgeless active contour algorithm. Caplan et al.
(2016) introduced a double-threshold region-growing
image segmentation algorithm that was used to iden-
tify CHs. Garton et al. (2018) used a new technique
of extraction of the CH information called the coro-
nal hole identification via the multi-thermal emission
recognition algorithm (CHIMERA) using the multi-
ple pass-bands of ATA and HMI images Scherrer et al.
(2012) from SDO Malanushenko and Jones (2005).
Mlarionov and Tlatov (2018) presented a CNN-based
automatic technique of the CH segmentation. Bandy-
opadhyay et al. (2020) introduced a robust algorithm
to segment out the CHs regions by using a Hough
transform-inspired fuzzy energy simulated dual con-
tour method. Illarionov et al. (2020) presented a
CNN network trained on 193 A ATA samples of SDO,
which is able to segment CHs on solar synoptic maps
and polar heliographic projections. Jarolim et al.
(2021) acquired multichannel HMI and ATA data of
SDO on the entire 24th solar cycle and proposed a
CNN-based automatic technique of the CH segmen-
tation, which can determine the CH boundaries with
accuracy of 98.1%. Ervin (2021) utilizes two essen-
tial machine learning techniques, namely the CNN
and K-means clustering to determine the CH regions
over the images obtained by EUVI/STEREO A/B
(195 A) and SDO/ATA (193 A).

“Detection” is a basic problem in computer vi-
sion, which stands for the proper identification of ob-
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Fig. 1: (a) 193 A AIA image with prominent northern and southern polar CHs on 2019/01/15, (b) 193 A AIA image
with visible northern, southern polar CH, a CH near north-western solar limb, and small CH regions on solar equator
captured on 2020/02/05, and (c) 193 A AIA image with elongated and prominent polar CH regions in both northern

and southern solar hemisphere captured on 2021/01/15.

jects Huang et al. (2017). In recent studies, many
object recognition models have been proposed which
comprise the essence of deep learning and convolu-
tional neural networks (CNNs). “You Only Look
Once” (YOLO) Redmon et al. (2015) and Single
Shot Multi-Box Detector (SSD) Lin et al. (2016) are
1-stage detectors, perform the task of object classi-
fication and detection. The Region-based Convolu-
tional Neural Network (R-CNN) incorporates a class-
agnostic region proposal module to perform the task.
Fast R-CNN Girshick et al. (2014) increases accu-
racy and speed, due to its simplified training proce-
dure. Faster R-CNN Ren et al. (2017) shows better
accuracy than Fast R-CNN. Lin et al. (2017) pro-
posed the Feature Pyramid Network (FPN), which
is used to enhance the detection ability of small ob-
jects. Mask R-CNN He et al. (2017), Cascade R-CNN
Cai and Vasconcelos (2018) and Region-based Fully
Convolutional Networks (R-FCN), Dai et al. (2016)
are known as 2-stage detectors. The architecture
of YOLOv2 Redmon and Farhadi (2017) is framed
on Darknet-19 containing 19 convolutional layers.
YOLOv3 Redmon and Farhadi (2018) is regarded as
a milestone for object detection which performed ob-
ject detection on the Microsoft COCO dataset Lin
et al. (2014). Darknet-53 formed the backbone of
YOLOv3. YOLOv4 was presented in Bochkovskiy
et al. (2020). YOLOvV5 Jocher et al. (2020), the first
YOLO model belongs to Ultralytics. It includes an
autoanchor algorithm. YOLOv6 Li et al. (2022) con-
sists of RepVGG or CSPStackRepblocks, an efficient
hybrid-channel strategy with advanced quantization
techniques. A couple of changes were introduced in
YOLOv7 Wang et al. (2022), among them, the ex-
tended efficient layer aggregation network (E-ELAN)
and the planned re-parameterized convolution was
notable. YOLOvS8 Jocher et al. (2023) came with
five scaled versions: YOLOv8n (nano), YOLOvS8s
(small), YOLOv8m (medium), YOLOvSI (large), and

YOLOvVS8x (extra large). YOLOvVS supports multiple
tasks such as object detection, segmentation and clas-
sification.

Solar physics has witnessed efforts to detect solar
objects such as coronal mass ejections (CMEs), coro-
nal holes (CHs), active regions (ARs), and sunspots.
In this experiment, localization of CHs on the 193

images of SDO is our main objective. There are
several techniques for finding out ROI, i.e. CH re-
gions, such as the intensity thresholding Henney and
Harvey (2007), perimeter tracing Kirk et al. (2009),
active contour detection Scholl and Habbal (2008),
edgeless active contour detection Boucheron et al.
(2016), and energy-based active contour detection
Bandyopadhyay et al. (2020). Excluding the in-
tensity thresholding method, the rest of the meth-
ods are categorized as region-growing techniques. In
the existing literature, various studies have utilized
the deep learning methods to categorize coronal holes
(CH) as a solar event alongside other solar phenom-
ena such as active regions (AR) and solar flares Ku-
cuk et al. (2017a), Armstrong and Fletcher (2019).
These studies trained their classification models us-
ing cropped images and the output was presented
as an image rather than pinpointing the locations
of the events on the solar disk. In a distinct ap-
proach, Baek et al. (2021) used Single-Shot Multi-
box Detector (SSD) and Faster Region-based Con-
volutional Neural Network (Faster R-CNN) to local-
ize coronal hole regions in their investigation of solar
event classification. However, it should be noted that
the accuracy of these methods was observed to be rel-
atively low. We introduce an automatic coronal hole
detection technique using SITDTCCCL with YOLO
v8. The novelty of our work lies in the following as-
pects: the primary challenge in intensity threshold-
ing is the selection of an appropriate threshold value,
and the time-consuming nature of the two-stage con-
tour computation using the fuzzy energy-based ac-
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tive contour method. To address this trade-off we
propose a novel approach known as Supervised Inten-
sity Thresholding with Distance Transform Cluster-
ing and Connected Component Labeling (SITDTC-
CCL). This method integrates the benefits of both
the intensity thresholding and region-growing tech-
niques, and it is presenting a solution that has not
been explored in the domain of solar physics. This
innovative approach aims to eliminate the drawbacks
associated with the threshold value determination
and contour computation time, and offers a more effi-
cient and effective alternative. We use more advanced
object detection algorithms (YOLO v8n, YOLO v8m,
YOLO v8x) for localization of the CH regions, and
achieve higher accuracy in detection of the CH re-
gions.

3. DATA SOURCE
3.1. Solar Dynamics Observatory (SDO)

SDO Pesnell et al. (2012) is a part of NASA’s
Living With a Star (LWS) mission, launched in 2010.
The Atmospheric Imaging Assembly (AIA) Lemen
et al. (2012), the Helioseismic and Magnetic Imager
(HMI) Schou et al. (2012) and the Extreme Ultra-
violet (EUV) Variability Experiment (EVE) Woods
et al. (2012) are three scientific instruments incorpo-
rated with SDO. AITA aimed to provide an unprece-
dented view of the heliosphere, taking images that
span at least 1.3 solar diameters in multiple wave-
lengths (94 A, 131 A, 171 A, 193 A, 211 X 304 A,
335 A, 1600 A, 1700 A, and 4500 A) every 12 sec-
onds Lemen et al. (2012) at a resolution of about 1
arcsecond. The HMI instrument is designed to mea-
sure the Sun’s internal magnetic oscillations and the
magnetic field at the photosphere, providing magne-
tograms and intensitygrams with time cadences of
45 s and 720 s, respectively. The entire solar disk
is captured by HMI at 6173 A with a resolution of 1
arcsecond. ATA and HMI produce images of various
resolutions, 4096 x 4096, 2048 x 2048, 1024 x 1024,
512 x 512, and 256 x 256 pixels, and daily gener-
ate 1.5 TB of data. The total data size from SDO
to date is approximately 5 PB. This enormous data
set generated by SDO contributed to eclectic stud-
ies and the application of deep learning techniques in
solar physics Kucuk et al. (2017b), Armstrong and
Fletcher (2019). We use the SDO/AIA data to train
the CH auto-detection models.

3.2. Data acquisition

For this experiment, we have used 193 A images
with resolution 512 x 512, obtained from the Solar
Dynamic Observatory (SDO) Pesnell et al. (2012)
(https://sdo.gsfc.nasa.gov/data/), for the pe-
riod of 4 years and 7 months, starting from 1 Jan-
uary 2019 to 31 July 2023. We have acquired data
between the ending phase of the 24th solar cycle and
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the starting phase of the 25th solar cycle. We worked
with images of size 512 x 512 because the maximum
image size supported by Yolo is 640x640, and we want
to avoid any preprocessing of those used images. SDO
captures 7200 full disk images of a specific channel or
wavelength every day. From this huge number of im-
ages we have taken one sample per day Krista and
Gallagher (2009), Bandyopadhyay et al. (2020). The
solar disk of the AIA 193 A channel is apparently
in a brown shade. In the EUV image, the white re-
gions represent hot flare plasma, ARs, and CMEs and
dark patches on the photosphere represent the CH
regions. Though the solar cycle 25 started on De-
cember 2019, we collected the data from 1 January
2019 as we wanted to use more than 1500 images
for this work. In this course of data acquisition, the
separation of the corrupted image from the full disk
image was the main challenge. We created a full-disk
CH data set from AIA 193 A images by resolving the
data preparation challenge manually, a process that
was time-consuming and required almost eight hours.

4. PROPOSED METHOD

We used the 193A image channel as an input in
the system and converted the image into a grayscale
image using the mean value of three channels of the
colour image, which can be expressed in the following
Eq. (1).

n

L= %ZL (z,y).

=1

(1)

After converting the image into grayscale, the subse-
quent step involves the solar disk segmentation. To
achieve this, we generated a mask with coordinates
corresponding to the solar disk, effectively masking
the background while preserving the solar disk. Tra-
ditional intensity thresholding methods as proposed
by Henney and Harvey (2007), Krista and Gallagher
(2009), typically involve the trial-and-error selection
of an initial threshold. In contrast, de Toma (2011)
used a two-stage thresholding technique for the de-
tection of coronal hole regions. The first threshold
was utilized to separate ARs from the image, and the
second threshold was applied to distinguish the CH
regions from the quiet Sun.

We aim to determine an effective threshold for
the CH region detection by evaluating initial thresh-
old values derived from a set of images. S is a set
of randomly selected grayscale samples of the 193 A
data, where we selected one sample randomly from
the data points of the entire month on the period
starting from January 2019 to July 2023, and Sgry
is the set of respective CH maps of SWPC. Igyay
and Iy, a grayscale data, and its corresponding
ground truth. Localization of CHs on the 193 A im-
age, initially done by visual identification with the
aid of the ground truth. We use the impixelinfo(x,
y) function, which offers pixel-wise insight into the
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Fig. 2: Steps of ROI detection. (a) An AIA 193 A image, (b) Converted Gray Scale image, (c¢) Mask Image of Image
(b) for solar disk segmentation, (d) Segmented Solar Disk, (e) Supervised Thresholding, (f) Distance Transform
Clustering(DTC) and Connected Component Labeling, (g) Detected ROI (CH regions).

Input: Set of gray scale solar image S of size n
Input: Set of ground truth of solar image Sgrp of
size n

Output: Selected threshold 7

fort=1tondo

IGra,y es
Ith € Sarn
L}, .. = max_CH_intensity (Igray, ITh)
Lt ... = min_CH _intensity (Igray, ITn)
end
Lbg = min (Li,;,)
Ubg = max (Li,,,)

fori=1 ton do
for k = LbR to UbR do
[I] = gray2bin (Igray, k)
[F)] = maz_accuracy (Ig, ITh)

end

[Flaz] = find_maz (Fy)
end
T =mean(F},,.)

Algorithm 1: Supervised threshold selection algo-
rithm.

CH regions. The enlisted maximum and minimum
threshold intensity of the CH regions helps to deter-
mine the upper limit and the lower limit of thresh-
old intensity. For every sample of S, binarize the
grayscale image for every threshold intensity, start-
ing from Lbg to Ubg, by incrementing the threshold

value by one. Accuracy of binary samples is checked
against the ground truth. In this study, we used
the percentage of the CH regions on the solar disk
Bandyopadhyay et al. (2020) as an accuracy mea-
sure. Threshold acquired the highest accuracy and is
enlisted into F}, ... The mean value of all data points
on F! . is the supervised threshold intensity 7. Sub-
sequently, we applied Distance Transform Clustering
(DTC) Starovoitov (1996) in the next step to group
the nearby regions together. The algorithm operates
as follows:

Step 1: Selection of discretization parame-
ter:
w is a set of M observation in the feature space of n
dimensions. From the set of input observation, PT
cluster cores will be identified. Let f : R,, — Z,,, map
w into discrete space Z™, a point in Z™ will be identi-
fied with label 1 if the respective hypercube contains
one observation, denoted as wp. Find t;, varying the
chosen function K; = (¢;) and using PT2 on the basis
of the metric.

Step 2: Data discretization:
Continue with the discritization with the parameter
t.

Step 3: Core extraction:
There exist two variants for the two corresponding
filters PT'1 and PT2. The filter with the variant PT'1
can be used for a) erosion, b) opening, ¢) dilation
followed by opening, d) opening followed by closing.
All the equations related to this step are given in

Eq. (2) - Eq. (5):

o1 = PT1H (2" =QP o R, (2)

(0]
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Fig. 3: Stages of the SITDTCCCL method to detect CH regions presented with twelve ATA 193A images, (a) Dates
of collected samples, (b) AIA 193A images, (c) Converted grayscale images, (d) Segmented solar disk, (e) Supervised
Intensity Thresholding, (f) Distance Transform Clustering and Connected Component Labeling, (g) Detected CH
regions on AIA 193A images.
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@ = PTG [PT1 (Z27)] = (P @ R)®R = QPoR,
(3)

w3 = PTZ5%, [PT1, (27)]

(@"eR)aR)®R
=(QPoR) @R,
(4)

pa = PTUE [PT300 [PT1Z,, (27)]]
=((Q"@R)oR)oR)®R= (2" e R) o R.
()

A digital Voronoi tessellation is carried out for
the extracted cores. Here, “th” represents the dis-
tance map thresholding after PT1, o and e symbols
identified with opening and closing operations. The
index “neg” (“pos”) in the transform operation infers
PT1~ (PT17") transform for the former entity of the
distance map after the previous PT, but not the ini-
tial image. Possible core of the cluster identified with
the aid of final thresholding. The PT2-based cluster-
ing can be expressed with respect to the ys-based
filter in the following Eq. (6):

(v) o = PTIE[PTI (2] (6)

The threshold value e; differs from the ”th” value.
For the opening operation an “adaptive” structuring
may be carried out with varying e;, (e; > 0,e3 < 0)
and detect the cluster core having the pixel with cost
values > e (it is the number of non-empty neighbor
pixels) and remove the group of pixels having cost
values > e; with (f (n) + e2) = neighbor in the cost
map.

Step 4: Digital space tessellation

A digital Voronoi tessellation is carried out for
extracted cores.

Step 5: Data clustering

In the course of tessellation every isolated spe-
cial pixel is identified with a zone of influence, which
implies that the pixel is a member of that specific
digital cluster. Initially, every n-dimensional obser-
vation belongs to the specific cluster selected for the
corresponding digital cubes.

Dispersed CHs regions are grouped through Dis-
tance Transform Clustering and every cluster is la-
beled through connected component labeling because
each labeled region is identified as a CH region, pro-
viding an efficient means to detect ROI.

In the next step of this work we use the connected
component labeling using the algorithm proposed by
Di Stefano and Bulgarelli (1999). The working proce-
dure of this classical approach of component labeling
is as follows:

Step 1: IMG = binary image, FG = foreground
pixels, BG = background pixels, FG and BG are
two subsets of IMG. CMP = connected component

of IMG, CMP is a subset of FG and all the pixels of
CMP are connected.

Step 2: Consider two pixels X and Y as con-
nected if there is a path of pixels (to;t1 ::: ¢,) such
that t, = X, t, =Y and V1 < 1 < i < nt;_1 and
t; are neighbors. CMP is 4-connected when it inter-
connects with 4 surrounding pixels and the CMP is
8-connected when it incorporates 8 neighboring pix-
els.

Step 3: In IMG, connected components will be
identified in the following way: when all pixels belong
to a connected component will be assigned a unique
label and different components will be identified with
some distinguished label values.

Step 4: In the process of labeling background
pixels remain unaltered but according to the princi-
ple, a new label has to be assigned for them. So, if the
image has n number of labels for n connected compo-
nents, the labeled image must have n+1 labels, the
new label [pg, will be assigned to the pixels of BG
and other n labels will be used to identify the pixels
of n distinct components which belong to FG.

Step 5: It is quite vivid that in the labeled image,
labels express the relation among the pixels. The
pixels identified with the label [ g are not necessarily
connected, but those pixels that bear a label value I;
and [; # Ipg are connected and belong to FG.

5. VALIDATION

In this study we used a two-stage validation pro-
cess to confirm the accuracy of the detected CH
regions. Initially, we compared our identified CH
regions against visual references from hand-written
solar synoptic maps. This validation approach is
similar to the method used by Malanushenko and
Jones (2005) who validated their detected CH regions
against Coronal Hole maps from the National So-
lar Observatory. The solar synoptic maps used for
our validation are accessible at the National Geo-
physical Data Center (NGDC) of NASA(https://
www.ngdc.noaa.gov/). Fig. 4 represents the po-
sitional validation of detected CH regions on AIA
193A images with respect to solar synoptic maps
on six different dates. In the second phase of val-
idation, we cross-verified the identified CH regions
in the collected images against the CH maps, con-
sidered ground truth, obtained from (https://www.
spaceweatherlive.com), presented in Fig. 5. This
website is a nonprofit organization based in Belgium
that provides various reports related to astronomy
and solar events. A comparative analysis was con-
ducted between the centroid coordinates and the ar-
eas of the detected CH regions in both the ATA (193
A) images and the CHs maps from Space Weather
Live, as presented in Table 1. During the validation
process, we allowed a buffer of +5 pixels for the x
and y coordinates of the computed centroid and £500
pixels for the computation of the detected area. In
the comparison section of Table 1, ED represents the
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Fig. 4: Positional validation of detected CH regions on ATIA 193A image with respect to solar synoptic map: (a)
Solar synoptic map of 2019/05/12; (b) Detected CH regions of 2019/05/12; (c) Solar synoptic map of 2019/08/05; (d)
Detected CH regions of 2019/08/05; (e) Solar synoptic map of 2020/06/10; (f) Detected CH regions of 2020/06/10;
(g) Solar synoptic map of 2020/11/21; (h) Detected CH regions of 2020/11/21; (i) Solar synoptic map of 2022/03/15;
(j) Detected CH regions of 2022/03/15; (k) Solar synoptic map of 2022/11/16; (1) Detected CH regions of 2022/11/16.

Euclidean distance between the centroids of the de-
tected CH region and the centroid of the respective
CH region in the CHs map. A represents the area of
CH regions in the CHs map of Space Weather Live
and B represents the area of CHs regions detected by
the proposed method in Table 1. In Fig. 5 (c), (g)
and (k) depict the CH regions of the CH map and
(b), (f), and (j) present the CH regions detected by
the SITDTCCCL method for the dates 2020/06/10,
2022/03/15 and 2022/11/16 respectively. AU B rep-
resents the CHs area covered by both the CHs map,
and the proposed method. It is presented as the en-
tire CH region covered by red, pink and blue, shown
in images (d), (h), and (1) of Fig. 5 and also shown in
Fig. 6. ANB in Table 1 shows the area of intersection
between the detected CH region by the SITDTCCCL
method and the CH regions of the CH map. Only the
pink regions stand for overlapped CH regions, pre-
sented in the (d), (h) and (1) images of Fig. 5 and
Fig. 6. The greater region of intersection is showing
better detection precision of CH regions. In Table 1,
BBOX represents the area of the bounding box where
the CH regions exist. We also compared the area of
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detected CH regions (computed) against the area of
the CH regions of the CH map (ground truth) on
each day of the years 2019, 2020, 2021, and 2022,
presented in Fig. 7 (a), (b), (c), and (d), respectively.

6. QUALITATIVE ANALYSIS

In this work, the quality of segmented CHs is as-
sessed using the score of two segmentation matrices
namely the Dice coefficient and Jaccard index. The
Dice coefficient is represented as (D.) and the Jac-
card index is represented as (Jr,,). We used CH maps
of Space Weather Live as ground truth to assess the
quality of segmented CH regions. The following equa-
tions represent the Dice coefficient and Jaccard index:

2| ANB |
D.=—F—57 7)
[AT+B] (
g _ D, 2|ANB| _|ANnB|
Im=9_D, |A|+|B|-]AnB| |AUB]|

(®)
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Table 1: Comparative study between the CHs map of Space Weather Live and CH regions detected by SITDTCCCL.

Space Weather Live SITDTCCCL Comparison
Date  Region 7 " 0" Area(A)  C. €, Area(B) ED AUB ANB BBOX
20100512 1  216.84 76.89 6712 217.00 78.85 6705 1.96 6747 6670 11400
2 20136 430.32 7313 289.72 43242 6926 2.66 7425 6814 12282
20190805 1  184.45 360.26 3552 18278 360.60 3372 1.70 3935 2989 5183
2 25679 8431 9936 256.64 8439 9863 0.17 10417 9382 11328
3 24800 441.00 2365 246.80 44201 2301 156 3051 1615 3528
4 37600 230.00 5565 374.28 229.90 5604 1.72 6064 5105 6900
20200610 1  240.13 77.73 6751 239.08 77.71 6705 1.05 6879 6577 8804
2 256.60 437.31 5026 256.38 437.10 5831 0.30 6285 5472 6954
20201121 1  269.38 106.67 18350 270.54 105.35 17210 1.76 19184 16384 24288
2 250.05 450.47 4064 250.10 451.08 3881 0.61 4331 3614 4602
20220315 1 21114 43156 5224 210.74 43145 5118 0.41 5605 4667 9324
20221116 1  175.11 380.55 9426 175.70 380.44 8920 0.60 9544 8811 10750

A represents the total area of the CH regions in the
ground truth. B represents the total area of the seg-
mented CH regions using this method.
Tables 2, 3, 4, and 5 contain the (D.) and Ta-
bles 6, 7, 8, 9 contain (Jy,) of Jan-Mar, April-Jun,
July-Sep, Oct-Dec, respectively, from 2019 to 2022.

7.

Table 2: Table of Dice Coefficient(Jan-Mar).

Year Jan Feb Mar

2019 0.9855 0.9931 0.9991
2020 0.9745 0.9965 0.9984
2021  0.9979 0.9969 0.9983
2022 0.8193 0.8587 0.8584

Table 3: Table of Dice Coeflicient(April-Jun).

Year Apr May Jun

2019 0.9966 0.9945 0.9896
2020 0.9908 0.9935 0.9850
2021 0.9973 0.9941 0.9955
2022 0.8100 0.7985 0.8265

Table 4: Table of Dice Coefficient(July-Sep).

Year Jul Aug Sep

2019 0.9951 0.9968 0.9948
2020 0.9895 0.9950 0.9892
2021 0.9913 0.9997 0.9967
2022 0.8421 0.8446 0.8642

OBJECT DETECTION WITH YOLO V8

Object detection comprises two tasks: localization
of the object and classification of the image accord-
ing to the object with the bounding box class of the

Table 5: Table of Dice Coefficient(Oct-Dec).

Year Oct Nov Dec

2019 0.9994 0.9983 0.9911
2020 0.9933 0.9862 0.9817
2021 0.9812 0.9627 0.9434
2022 0.8884 0.8385 0.8131

Table 6: Table of Jaccard index (Jan-Mar).

Year Jan Feb Mar

2019 0.9715 0.9864 0.9982
2020 0.9502 0.9931 0.9968
2021 0.9959 0.9938 0.9967
2022 0.6939 0.7524 0.7520

Table 7: Table of Jaccard index (April-Jun).

Year Apr May Jun

2019 0.9933 0.9890 0.9795
2020 0.9818 0.9872 0.9901
2021 0.9947 0.9883 0.9911
2022 0.6806 0.6646 0.7043

Table 8: Table of Jaccard index (July-Sep).

Year Jul Aug Sep

2019 0.9903 0.9937 0.9896
2020 0.9793 0.9901 0.9786
2021  0.9827 0.9995 0.9934
2022 0.7273 0.7311 0.7609

predicted object Redmon et al. (2015). In this study
we have used YOLO v8 which was introduced by Ul-
tralytics in January 2023 Jocher et al. (2023). The
anchor-free YOLO v8 architecture has shown fast and
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Fig. 5: Validation of detected CH regions in the AIA 193 A image with respect to the CHs map of Space Weather
Live (Ground Truth) : (a) The ATA 193A image of 2020/06/10, (b) Detected CH regions on 2020/06/10 using the
proposed method, (¢) The CHs map of 2020/06/10, (d) Overlapped regions between detected CH regions and the
CH map on 2020/06/10 (e) The ATA 193 A image of 2022/03/15, (f) Detected CH regions of 2022/03/15 using the
proposed method, (g) The CHs map on 2022/03/15, (h) Overlapped regions between detected CH regions and the
CH map on 2022/03/15, (i) The AIA 193A image of 2022/11/16, (j) Detected CH regions of 2022/11/16 using the
proposed method, (k) The CH map on 2022/11/16, (1) Regions of commonality between the detected CH regions and

CH map on 2022/11/16.

Table 9: Table of Jaccard index (Oct-Dec).

Year Oct Nov Dec

2019 0.9988 0.9966 0.9823
2020 0.9867 0.9728 0.9642
2021 0.9631 0.9282 0.8929
2022 0.7993 0.7219 0.6851

accurate prediction by decreasing the time taken for
NMS through proper optimization of the box predic-
tion. It uses the sigmoid function as the activation
function for calculation of the objectness score. Fig. 8
shows the common architecture for YOLO v8 divided
into three parts - Backbone, Neck, and Head.

7.1. Backbone

A modified CSPDarknet53 served as the back-
bone of the YOLOv8 model, which encapsulates the
essence of Cross Stage Partial (CSP). The C2f module
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(2 ConvModule and n BottleNeck) performs the task
of feature extraction by integrating the functionalities
of the C3 module (3 ConvModule and n BottleNeck)
of YOLO v5 and ELAN (Efficient Layer Aggregation
Network) Ju and Cai (2023), which was introduced in
YOLOvT Wang et al. (2022). C2f generates rich gra-
dient flow information. A convolutional layer batch
normalization and SiLU activation function are inte-
grated with a convmodule.

7.2. Neck

The backbone is coupled with the neck at three
different depths (Stage 2, Stage 3 and Stage 4). The
neck generates a fusion of features, obtained from
various layers of the network and passes that to the
Head. It incorporates two special networks, such as
the path aggregation network (PAN) Liu et al. (2018)
and feature pyramid network (FPN) Lin et al. (2017),
to prevent information loss in the course of multiple
convolutions.
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Solar Image with CH region

Znomed CH Region

Fig. 6: Enlarged image of the detected CH region on 2022/11/16, showing overlapped region (in pink) between the
detected CH region (by SITDTCCCL) and CH map of Space Weather Live.
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Fig. 7: Day-wise diagrammatic validation of computed area of CH regions in AIA 193A by SITDTCCCL against

(a) Validation of CH regions of the year 2019; (b)

Validation of CH regions of the year 2020; (c) Validation of CH regions of the year 2021; (d) Validation of CH regions

of the year 2022.
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Fig. 8: Architecture of YOLOVS.

7.3. Head

There are three detection heads in the YOLO
v8 model. These heads are dedicated to decoupled
classification and regression tasks. The decoupled
detection Head was introduced by YOLOv6 Terven
and Cordova-Esparza (2023) and YOLOX. YOLOvS
is anchor-free because of the decoupled head which
helps in the direct prediction of the center of the
object and bounding box parameters in Eq. (15).
This anchor-free network facilitates the task—aligned
one-stage object detection (TOOD).

7.4. Loss function

Loss function represents the loss of information
between the ground truth and prediction. It can
be represented as an integration of classification and
bounding box regression loss as shown in Eq. (13).
In YOLO v8 Binary Class Entropy (BCE) the loss
can be represented with the Eq. (9):

BCE; = l(z,y) = yn - loglog (o(z, + 1))
+ (1 —yy) - loglog (1 — o(xzy)) .
(9)
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In Eq. (9), n is the number of samples, y,, is the
ground truth value, and z, is the predicted value.
The position-based regression loss is presented as
sum of Distribution Focal Loss (DFL) and the Com-
plete IoU (CIoU) loss. DFL can be expressed as fol-
lows Li et al. (2020):

DFLSj,Si+1 = 7((yi+1 - y) : log log(Sl)
+(y —yi) - log IOg(Si+1))a

where y; represents the left-hand side values of the
label y and y;41 represents the right-hand side values
of the label y, and where P (y;) is computed using
the softmax layer denoted by S;, y is represented in
Eq. (11). CIoU loss is presented as the addition of
IoU, Distance IoU (DIoU) Zheng et al. (2020), which
can be expressed as Eq. (12):

y=>_ P v
1=0

|B N BY|
|B U B9t|’

(10)

(11)

IoU = (12)

Where By = (Zgt, Ygt; Wat, hge) is the ground
truth and B = (z,y,w, h) is the predicted box.
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Fig. 9: Sub modules of the YOLOvVS8 architecture: (a) C2f Module; (b) SPPF Module; (c) Convolution Module; (d)

Darknet Bottleneck Module.

d? v?
BBRL = CIoU; =1-IoU+ — 4+ —————, (13
ot © +02+1—10U+v’( )
4 Wyt Wy 2
V = — [ arctan —— — arctan — | , (14)
™ Whit hp

where v is the consistency in aspect ratio with wg;
and hg; being the width and height of the ground
truth bounding box, w, and h, are the width and
height of the predicted bounding box; d is the Eu-
clidean distance between the center point of the pre-
dicted and ground truth bounding boxes; ¢ is the
diagonal length of the smallest box enclosing both
boxes Zheng et al. (2020). Finally, the loss function
in each decoupled head is expressed as ft, and A1, A2
and A3 are three constants and shown in Eq. (15):

fl= A1 BCEl+ A2 DFL + A3 BBRL. (15)

7.5. AdamW optimization

The AdamW optimization is a stochastic opti-
mization method for the decoupled weight decay
regularization method introduced by Loshchilov and
Hutter (2017), which can be expressed using the fol-
lowing Eq. (16). g is the gradiant at time t, V f (6;)
batch gradiant at time ¢, w; decay rate, and 6; is de-
cay at time t.We used the AdamW optimization in
this experiment in training of YOLO v8 models. We
deployed three YOLOv8 models, such as YOLO v8n
(nano), YOLOv8m (medium), and YOLOv8x (extra
large) for our experiment and studied their compara-
tive performance in the detection of the CH regions:

gt = V(0 +wby) . (16)

8. EXPERIMENT AND RESULTS

In this experiment, we used 1672 images, 111 im-
ages with no CH regions, and 1561 images with the
CH regions. In this data set, 85% data were used in
training and validation, and 15% data were used in
the testing process. We have created annotation files
according to Microsoft’s COCO data set format. We
deployed three models of YOLO v8, such as YOLO
v8n (nano), YOLO v8m (medium), and YOLO v8x
(extra large) for automatic detection of the CH re-
gions. We continued the training and testing pro-
cess from epoch 1 to 40 for each YOLO v8 model.
YOLO v8n contains 168 layers, 3006038 parameters,
8.1 GFLOPs, and takes 0.286 hours to complete 40
epochs. YOLO v8m comprises 218 layers, 25840918
parameters, 78.7 GFLOPs, which finishes 40 epochs
in 0.466 hours. YOLO v8x is the largest among
the YOLO v8 models, which incorporates 268 lay-
ers, 68125494 parameters, 257.4 GFLOPs, and com-
pletes 40 epochs in 1.076 hours. We used four evalu-
ation matrices for this work, namely, F1 score, Pre-
cision (P), Recall (R), and mean Average Precision
(mAP), which are defined later. The following Fig. 8
presents the automatically detected CHs on twelve
different days (2019/04/12, 2021/07/29, 2021/08/27,
2021/08/28, 2021,/08/30, 2021/09/07, 2021/10/16,
2021/10/29, 2021/11/30, 2021/12/15, 2022/11/16,
and 2023/06/27) of the transition phase between the
24th and 25th solar cycle. It also incorporates four
terms required for these evaluation matrices, such
as True Positive (TP), when the predicted object
matches its label with the ground truth, it is said
that the model has identified the object correctly.
True Negative (TN) occurs when the predicted label
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Fig. 11: Coronal Hole (CH) and Not Coronal Hole (NC)
classification contingency (Confusion Matrix).

of the object differs from the ground truth, or the
model has identified the object in the wrong class.
False Positive (FP) is when a model labels an object,
but the label does not belong to the ground truth,
which means such an object is detected that is not
there, or wrongly labeled. False Negative (FN) occurs
when a label is not predicted by the model, which
means the object is not being identified properly. In
this work, either the solar disk has one or more CH
regions and is labeled as CH, or the solar disk has no
CH regions on it, then we label it as NC, meaning
"No CH”.

Precision of a class is also termed as a positive pre-
dicted value because it is a ratio of true positives
(TP) and the total number of predicted positives can
be expressed with Eq. (17):

TP
TP +FP’

Recall is synonymous with true positive rate
(TPR) or sensitivity, as it can be defined as the ratio
of TP and total ground truth positives in the follow-
ing way:

(17)

Precision =

TP
TP + FN'

The F1 score can be expressed in terms of Preci-
sion and Recall. In the field of computer vision and
Data Science, the F1 score is also defined as harmonic
mean of Precision and Recall:

Recall = (18)

Precisson x Recall

F1 score =2 x (19)

Precisson + Recall”
For evaluation of the object detection task, mAP is
widely used, which also includes the precision-recall
(PR) area under the curve (AUC) and ToU (based on
the Jaccard overlap) between the bounding boxes of
our dataset and predicted boxes is greater than 0.5.
The mAP can be expressed using Eq. (20) where AP,
is the average precision of each class and N is the total
number of classes, including the background as a class

type:

N
1
mAP = ; AP;. (20)

In this study we have performed training and test-
ing on the three different YOLOv8 models and eval-
uated their performance for the four discussed matri-
ces. Their respective accuracy of object detection is
presented in tables below. Table 10 contains values
of the F1 score, Precision, Recall, and mAP values

Table 10: Performance table of YOLOv8n.

5} =)

c2 2 8 &

SRS A g ~

1 0.84 0.917 0.883 0.98
2 0.86 0.949 0.894 0.97
3 0.84 0997 0.883 0.98
4 0.86 0.944 0.916 0.98
5 0.85 0.954 0.899 0.98
6 0.85 0.983 0.895 0.98
7 0.88 0.967 0.927 0.99
8 0.87 0.972  0.927 0.99
9 0.86 0.932 0.913 0.99
10 0.90 0.929 0.931 0.98
11 0.89 0.978 0.935 0.99
12 0.88 0.935 0.931 0.99
13 0.87 0.947 0.910 0.99
14 0.88  0.909 0.933 0.99
15 0.87 0.919 0.933 0.98
16 0.90 0.926 0.947 0.99
17 0.89 0932 0.952 0.99
18 0.91 0.925 0.961 0.99
19 0.89 0.956 0.935 0.99
20 0.89 0.923 0.947 0.99
21 0.88 0.917 0.927 0.99
22 0.89 0917 0.953 0.99
23 0.91 0.919 0.956 0.99
24 0.89 0.949 0.935 0.99
25 0.90 0.938 0.956 0.99
26 0.91 0941 0.964 0.99
27 0.89 0.968 0.940 0.99
28 0.90 0.942 0.956 0.99
29 0.89 0.933 0.942 0.99
30 0.89 0.964 0.948 0.99
31 0.90 0.935 0.948 0.99
32 0.91 0.944 0.960 0.99
33 0.89 0.934 0.946 0.99
34 0.90 0.917 0.962 0.99
35 0.91 0.929 0.959 0.99
36 0.93 0.969 0.965 0.99
37 092 0971 0.962 0.99
38 0.91 0.948 0.956 0.99
39 0.89 0.935 0.947 0.99
40 0.92 0956 0.965 0.99
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for Epochs 1 to 40 for YOLOv8n, similarly Table 11
for YOLOv8m, and Table 12 for YOLOv8x. Auto-
matic detection of the CH regions using a deep learn-
ing technique has been done as a part of the solar
event Kucuk et al. (2017b), Baek et al. (2021). Still,
those models used cropped images and labeled images
of multiple ATA images of different wavelengths

Table 11: Performance table of YOLOv8m.

55 & g o 3

& E & E £

1 0.85 0.947 0.893 0.97
2 0.86 0926 0.905 0.98
3 0.86  0.930 0.907 0.97
4 0.85 0.886 0.874 0.98
5 0.89 0.847 0.933 0.98
6 0.87 0.872 0.928 0.98
7 0.88 0910 0.927 0.98
8 0.90 0.884 0.937 0.98
9 0.89 0.913 0.935 0.98
10 0.90 0.896 0.936 0.99
11 0.89 0913 0.924 0.98
12 0.89 0938 0.932 0.99
13 0.89 0935 0.937 0.99
14 0.90 0.926 0.951 0.99
15 0.89 0.893 0.945 0.98
16 0.89 0904 0.931 0.98
17 0.91 0914 0.952 0.99
18 0.92 0943 0.967 0.99
19 0.92 0.949 0.973 0.99
20 0.93 0.906 0.971 0.99
21 0.91 0910 0.910 0.98
22 0.92 0952 0.966 0.99
23 0.93 0927 0974 0.99
24 0.94 0.952 0.972 0.99
25 0.94 0.946 0.975 0.99
26 0.90 0914 0.946 0.98
27 0.93 0920 0.974 0.99
28 0.94 0947 0.975 0.99
29 094 0952 0973 0.99
30 0.91 0.949 0.961 0.99
31 0.92 0.927 0.956 0.98
32 0.94 0949 0.972 0.99
33 0.94 0946 0.972 0.99
34 0.94 0966 0.975 0.99
35 0.92 0.968 0.967 0.99
36 0.93 0.961 0.965 0.99
37 0.93 0935 0.967 0.99
38 0.94 0946 0.971 0.99
39 0.95 0960 0.973 0.99
40 0.94 0.956 0.977 0.99
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instead of automatic detection of the CH regions and
have shown less accuracy in terms of detection of
the CH regions. Kucuk et al. (2017a) have shown
the detection rate 77% (TPR or Recall) and Back
et al. (2021) got 77%(mAP) and 76%(mAP) for
Faster RCN and SSD, respectively and TPR score
83% and 85% for Faster RCN and SSD.

Table 12: Performance table of YOLOv8x.
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1 0.90 0934 0.947 0.99
2 091 0926  0.955 0.99
3 0.90 0.877 0.956 0.99
4 0.90 0.877  0.956 0.99
5 0.85 0966  0.893 0.97
6 0.84 0944  0.887 0.98
7 0.87 0931  0.910 0.99
8 0.93 0.928 0970 1.00
9 0.85  0.90 0.904  0.98
10 0.87 0.879  0.908 0.98
11 0.87 0.896  0.906 0.98
12 0.89 0917  0.932 0.98
13 091 0882  0.956 0.99
14 0.89 0928  0.927 0.98
15 0.88 0.896  0.930 0.99
16 0.89  0.859  0.943 0.99
17 0.88  0.898  0.918 0.99
18 0.90 0.893  0.950 0.99
19 0.92 0901  0.967 0.99
20 0.90  0.90 0.949  0.99
21 0.90 0914 0.951 0.99
22 0.92 0.891  0.967 0.99
23 0.90 0922  0.951 0.99
24 091 0884  0.956 0.99
25 0.92 0922  0.969 0.99
26 0.92 0917  0.962 0.99
27 0.90 0906  0.955 0.99
28 0.90 0.893  0.951 0.99
29 091 0916 0.963 0.9
30 0.93 0942  0.975 0.99
31 091 0929 0.965 0.99
32 0.93 0947  0.969 0.9
33 091 00918  0.964 0.99
34 0.90 0927  0.951 0.99
35 0.93 0947 0971 0.99
36 091 0948  0.958 0.99
37 0.93 0923 0.973 0.99
38 0.94 0942  0.977 1.00
39 0.92  0.952 0.968 0.99
40 0.95 0.946 0.981 1.00
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Fig. 12: Comparison of various evaluation parameters with YOLOv8n, YOLOv8m and YOLOvS8x in different Epochs.

A successful comparison has been drawn here. It
has been found that the recall value of the research
outcome is confined within the range of 0.97 to 1.00,
the obtained F1 score stays in 0.84 > F'1 > 0.92,
maximum F1 score is 0.92 for YOLOv8n at epoch
40, the precision belongs to the range started from
0.917 to be 0.978, its maximum value is found 0.978
at epoch 11, as for mAP50, it stays in the range
between 0.894 to 0.965, and has maximum 0.965 at
epoch 40. In the case of YOLOv8m, F1 is confined
within the range of 0.85 to 0.95 and we get the high-
est F1 score 0.95 at epoch 39, the value of Precision
is confined within the range of 0.847 to 0.961, the
maximum Precision is 0.961 at epoch 36, the value of
mAP50 stays in 0.874 < mAP50 < 0.977, the high-
est mAPS50 is 0.977 at epoch 40. The outcome of the
recall value ranges between 0.98 and 0.99, whereas
the maximum recall value is at epoch 10. For the
YOLOv8x model, the F1 score confined 0.84 to 0.95
and we get the highest F1 score of 0.95, at epoch
40, Precision stays in 0.877 < Precision < 0.952,
its maximum 0.952 at epoch 39. As for mAP50, it
stays in the range between 0.887 and 0.981, and has
maximum 0.981 at epoch 40. The following Table 10,
Table 11 and Table 12 contain the epoch-wise per-
formance scores of the F1 score, Precision, mAP50,
and Recall (True Positive Rate) of YOLOv8n (nano),

YOLOv8m (medium), YOLOv8x (extra large), re-
spectively.

9. DISCUSSION

In this experiment, we used three YOLOv8 mod-
els, namely YOLOv8n, YOLOv8m and YOLOv8x
for automated detection of coronal hole (CH) re-
gions, analyzing and comparing their performance
in this task. While Kucuk et al. (2017a), Baek et al.
(2021) used nearly 10,000 data points for the CH re-
gion detection, our study used only 1561 images for
training, testing and validation, achieving superior
accuracy in the CH region identification. Our pro-
posed model demonstrated impressive results with
the YOLOv8n (nano) architecture, achieving 93%
(F1 score), 97.1% (Precision), 96.5% (mAP), and
99% (True Positive Rate) accuracy in the CH re-
gion identification. The YOLOv8m (medium) ar-
chitecture exhibited accuracy rates of 95%, 96.1%,
97.7%, and 99% for the F1 score, Precision, mAP,
and TPR, respectively. The YOLOv8x (extra-large)
network architecture demonstrated the highest accu-
racy in the CH region detection, achieving rates of
95% for the F1 score, 95.2% for Precision, 98.1% for
mAP, and 100% for Recall. Given that the 193 A
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wavelength includes the activere gions, quiet sun, and
CH regions, we intend to classify these regions in the
future. Additionally, we aim to classify the CH re-
gions based on their positions and locations. Rec-
ognizing the portrayal of CH regions as solar events
in various works, we envision automated detection of
solar events such as sunspots, solar flares, ARs, solar
prominences, and coronal mass ejections. In the fu-
ture, we plan to implement the YOLO-NAS network
architecture for the CH region detection.
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YK 523.98:004.932: 5244
Opuzunasny HaywHY Pao

Koponanue pyne nmajy BaKHY yJIOTY Y COIap-
HOj ¢usunu. OHe DONPUHOCE HACTAHKY TeoMar-
HETHUX oayja. EMucuja HaeIeKTpuCcaHnX 4eCTHUIa
y MehynnaseTapHU IPOCTOP YTUUE HA CBEMUPCKE
BPEMEHCKe IpUINKe. KopoHaiHe pyne Kao 3Hada-
jar neo CyHUYeBe aKTUBHOCTH, UMajy BEJIVKU yTU-
naj Ha KIMMy 3emibe. 300r Tora je OTKpUBAI:E
KODOHAJHUX PyIa 3HAaJajaH 3anaTak u Beh je Ou-
JIO OOCTa MOKyWIaja y TOM IpaBIy. Y OBOM Dany
npenIakeMO HOBU METOZ 3a ayTOMAaTCKO OTKPU-
Bamk€ PEruoHa KOPOHAJIHUX DyIa KOPUIINEemeM
TEeXHUKE AyOOKOT yuema. Ropuctuiaum cMo MeTo-
Iy HaarienaHor onpebuBama Impara WHTEH3UTE-
Ta ca I'pyIuCcameM TpaHCchopMallje PacTojama

90

¥ O3HAYABAKEM IIOBE3AHUX KOMIIOHEHTU (€Hr. Su-
pervised Intensity Thresholding with Distance Trans-
form Clustering and Connected Component Label-
ing, SITDTCCCL) paan mpoHAJaKema DPEruoHa
O MHTEepeca Ha CHUMIIUMA TajlacHe aykuHe 193 A
npurynsbeuM ca CosapHe IMHAMUUKE OICEpPBa-
topuje (emr. SDO). Capemenu meron myGoror
yuema (YOLO v8) mokazao je usyseTHe pe3yiTa-
Te y OTKPUBAKhY KOPOHAJIHUX PYyIa €a BPEIHOC-
TUMa MoKa3aTesba Kao mTo cy F1 pesyarar 95%,
npenussocTt 97,1%, Mepa TauHOCTH y meTeKIUju
objerara (enr. mAP50) 98,1% u crome MCTUHCKM
nosutuBHux pesynrara (ear. TPR) 100%.
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