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SUMMARY: This study explores a Kantowski-Sachs cosmological model within the framework of
Modified gravity, utilizing an interacting field as the energy source. The interacting field comprises
a linear combination of electromagnetic, massless scalar, and charged perfect fluid components. Our
analysis encompasses four distinct scenarios: perfect fluid, disordered radiation, dust fluid, and dark
energy. By establishing a relationship between metric potentials, we solved the field equations and
investigated pressure and density profiles using the equation of state. A comprehensive examination of
cosmological and dynamical parameters was also conducted.
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1. INTRODUCTION

The accelerating expansion of the universe re-
mains a topic of great interest. Observations of Type
Ia supernovae have consistently shown that the uni-
verse’s expansion is accelerating (Perlmutter et al.
1997, Riess et al. 1998, Perlmutter et al. 1998, 1999,
Spergel et al. 2003). To explain this phenomenon,
researchers (Planck Collaboration et al. 2016, 2020)
have proposed the existence of dark energy, a mys-
terious energy component with repulsive properties.
Dark energy can be characterized using the equation
of state parameter (EOS) ω = p/ρ, where p is pres-
sure and ρ is energy density.

Modified gravity theories, such as f(R), f(T ) and
f(R, T ) have been developed to explore dark energy
and other cosmological issues. These theories pro-
vide a framework for understanding the universe’s
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accelerated expansion. For instance, the f(R) theory
naturally accounts for both the early-time inflation
and late-time acceleration. Alternative theories, in-
cluding the scalar-Gauss-Bonnet gravity (f(G)) and
f(T ) gravity, have also been proposed to explain the
accelerating universe.

A more generalized theory, the f(R, T ) gravity,
has been introduced by (Harko and Lobo 2010, Harko
et al. 2011), which incorporates an arbitrary function
of the scalar curvature R and the trace of the energy-
momentum tensor T . This theory has been explored
extensively to address various cosmological issues.
Researchers have explored various cosmological mod-
els within the f(R, T ) theory of gravity. For instance,
Pawar et al. (2018a). derived a Kaluza-Klein string
cosmological model, while Houndjo (2012) developed
a cosmological scenario discussing a transition from
a matter-dominated era. Tiwari et al. (2021) exam-
ined the LRS Bianchi type-I model with a variable
deceleration parameter dependent on the Hubble pa-
rameter. Other studies (Santhi Kumar and Satyan-
narayana 2017, Santos 2013, Tretyakov 2018) have in-
vestigated accelerating anisotropic cosmological mod-
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els, Gödel universe solutions, and cosmology in mod-
ified f(R, T ) gravity.

Recent studies (Tiwari et al. 2023, Bhardwaj and
Rana 2019, Khade 2023, Tiwari and Sofuoğlu 2020)
have also explored specific models, including the
Bianchi type-I model with a decaying cosmological
term, transition models via observational constraints,
and LRS Bianchi-I transit universe with periodic
varying q. Additionally, researchers have investigated
the behavior of Bianchi Type-V dark energy mod-
els and quadratically varying deceleration parameters
within this modified theory.

Researchers (Pawar et al. 2018b, Kandalkar et al.
2009, Reddy et al. 2014, Samanta 2013) have exten-
sively explored Kantowski-Sachs cosmological mod-
els in various modified gravity theories. For instance,
studies have examined tilted Kantowski-Sachs mod-
els in Brans-Dicke theory, viscous fluid models with
varying Λ, and bulk viscous string cosmological mod-
els in f(R, T ) gravity.

Other investigations (Katore and Hatkar 2016,
Santhi et al. 2016, Vinutha et al. 2023, Zubair and Ali
Hassan 2016) have focused on Kantowski-Sachs uni-
verses filled with perfect fluid in the f(R, T ) theory,
domain wall cosmological models, and scalar field cos-
mological models in modified gravity. The dynamics
of Bianchi type I, III, and Kantowski-Sachs solutions
in f(R, T ) gravity have also been explored.

Additionally, researchers (Singh et al. 2015, Sharif
and Nawazish 2017, Rao et al. 2023) have analyzed
bounce conditions in Kantowski-Sachs and Bianchi
cosmologies, cosmological analysis of scalar field
models, and dynamics of cosmological models with
domain walls and massive scalar fields in f(R, T )
gravity.

Recent studies (Motavalli et al. 2016, Qazi et al.
2022, Amir and Yussouf 2015, Ghate and Sontakke
2018) have also investigated Kantowski-Sachs cosmo-
logical solutions in generalized teleparallel gravity,
classification of Kantowski-Sachs and Bianchi type III
solutions in f(T ) gravity, and ghost dark energy cos-
mological models with specific Hubble parameters in
f(R, T ) gravity. This study investigates a Kantowski-
Sachs cosmological model within the framework of
f(R, T ) modified gravity. In this theory, the gravita-
tional Lagrangian is an arbitrary function of the Ricci
scalar R and the trace of the stress-energy momen-
tum tensor T , taking the form f(R, T ) = R+ 2f(T ).
The theoretical foundations of f(R, T ) gravity and
the corresponding metric field equations are outlined
in Section 2. Section 3 presents the derived solutions,
while Section 4 discusses the dynamical properties of
the model. Finally, Section 5 summarizes and con-
cludes the findings.

2. METRIC AND FIELD EQUATIONS

Homogeneous and Anisotropic Kantowski-Sachs
spacetime is:

ds2 = dt2 −A2dr2 −B2(dθ2 + sin2θdφ2), (1)

where A and B are functions of cosmic time t.
Field Equations of the formalism of Hilbert-

Einstein Variational Principle in f(R, T ) Gravity is:

S =
1

2

∫
f(R, T )

√
−gd4x+

∫
Lm
√
−gd4x, (2)

where the symbols have their usual meanings.
The gravitational field equations for f(R, T ) grav-

ity is given by:

fR(R, T )Rij −
1

2
f(R, T )gij

+(gij∇k∇k −∇i∇j)fR(R, T )

= (k − fT (R, T ))T̄ij − fT (R, T )θij ,

(3)

where θij = gαβ
∂Tαβ
∂gij , fR = ∂f(R,T )

∂R , fT = ∂f(R,T )
∂T

∇i is the covarient derivative. We choose k = 8πG
c4 ,

where G is the Newtonian Gravitational constant and
c is speed of light in vacuum. T̄ij is the standard mat-
ter energy-momentum tensor derived from the La-
grangian Lm. We choose the matter Lagrangian only
for a perfect fluid distribution as Lm = −p. We as-
sumed the model:

f(R, T ) = R+ 2f(T ), (4)

where f(T ) is an arbitrary function of the trace of
energy-momentum tensor and we choose f(T ) = λT
with λ taken as a constant. Now, the relativistic field
equations of the f(R, T ) gravity theory for linearly
coupled charged perfect fluid, source-free electromag-
netic field, and mass-less scalar fields are:

Gij = Rij−
1

2
Rgij = (k+2λ)T̄ij+λ(T̄ + 2p)gij . (5)

Also, the Einstein field equation for general theory
of relativity is given by:

Gij = Rij −
1

2
Rgij −Λgij = −8πTij . (6)

Here, Λ is the cosmological constant, which we use
as the dark energy source. Comparing Eq. (5) with
the Einstein field Eq. (6), we have:

Λ = λ(T̄ + 2p). (7)

We considered the source of energy of the gravita-
tional field as interacting field with dark energy and
observed the behavior of the cosmological model in
presence of linearly coupled perfect fluid distribution,
mass-less scalar field, and source of a free electromag-
netic field. That is:

T̄ij = Sij + Tij + Eij , (8)

where Sij is the energy-momentum tensor for perfect
fluid distribution and it is given by:

Sij = (p+ ρ)uiuj − gijp, (9)

with
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gijuiuj = 1, (10)

where, p, ρ and ui are internal pressure, rest mass
density, and four-velocity vectors of the distribution,
respectively. Tij is the energy-momentum tensor for
the mass-less scalar field and it is given by:

Tij = U,iU,j −
1

2
gijUsU

′s. (11)

The mass-less scalar field U also satisfies

gijU;ij = ρc, (12)

where, ρc is the charge density, semicolon (;) and
comma (,) denote the covariant derivative and partial
derivative, respectively. Eij is the electromagnetic
energy-momentum tensor given by:

Eij =
1

4π
[FiαF

α
j −

1

4
gijFαβF

αβ ]. (13)

Here, Fij is the electromagnetic field tensor obtained
from the four potential φi,:

Fij = φi,j − φj,i, (14)

F ij;j = −4πρcu
i. (15)

In the co-moving transformation system the magnetic
field is considered along the z - axis only; there-
fore the non-vanishing components of electromag-
netic fields Fij are only F12 and F21. Also, we have
the electromagnetic field tensor anti-symmetric. The
first set of Maxwell equations is:

Fij,k + Fjk,i + Fki,j = 0, (16)

leading to:

F12 = M = constant. (17)

Now, from Eqs. (8), (9), (13) for the metric Eq. (1),
we have:

T̄ = −U̇2 − 3p+ ρ. (18)

Now, by using F12 =const.=M and u4 6= 0, from
Eq. (15) we have that the charge density is zero (ρc =
0).

The field equations of f(R, T ) Eq. (5), for the met-
ric Eq. (1) can be expressed as:

2
B̈

B
+
Ḃ2

B2
+

1

B2
= −(k + 2λ)[

M2

8πA2B2
− U̇2

2
− p]

−λ[ρ− p− U̇2],
(19)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
= −(k + 2λ)[

M2

8πA2B2
− U̇2

2
− p]

−λ[ρ− p− U̇2],
(20)

Ä

A
+
B̈

B
+
Ȧ

A

Ḃ

B
= −(k + 2λ)[

−M2

8πA2B2 − U̇2

2 − p]

−λ[ρ− p− U̇2],
(21)

2
ȦḂ

AB
+
Ḃ2

B2
+

1

B2
= −(k + 2λ)[

−M2

8πA2B2
+
U̇2

2
+ ρ]

−λ[ρ− p− U̇2].
(22)

From Eq. (5) and Eq. (11), we get:

Ü

U̇
+
Ȧ

Ȧ
+ 2

Ḃ

Ḃ
= 0. (23)

Here the dot stands for differentiation with respect
to time t.

3. SOLUTION OF THE FIELD
EQUATIONS

The system of Eqs. (19) - (22) comprises the
nonlinear differential equations with five unknowns:
A,B,U, p, and ρ. To elucidate the physical properties
of the universe described by Eq. (1), we seek to de-
termine these variables. However, solving these equa-
tions directly is challenging. To obtain the exact solu-
tions, we introduce additional constraints that facili-
tate the derivation of specific solutions for Eqs (19) -
(22). We begin by establishing a relationship between
the metric potentials, which enables us to simplify
the field equations and extract meaningful physical
insights.

A = Bn, n 6= 1. (24)

From Eq. (24), the field Eqs (19) - (22) reduce to:

B̈

B
+ (1 + n)

Ḃ2

B2
+

1

(1− n)B2
= 0. (25)

The above equation can be written as:

df2

dB
+

2(1 + n)f2

B
=

2

(n− 1)B
, (26)

where, Ḃ′ = f(B).
From Eq. (26), we get:

dB

dτ
= [

1

2(n2 − 1)
+

k1
B(2n+2)

]1/2, (27)

where k1 is the integration constant, and d2τ
dt2 =

−k(n+1)
τ2n+3 . After suitable coordinate transformations,

we will explore the physical characteristics of dy-
namic parameters of the cosmological model de-
scribed in Eq. (1) as:

ds2 = [
1

2(n2 − 1)
+

k1
τ (2n+2)

]−1dτ2 − τndr2

−τ2(dθ2 + sin2θdφ2).

(28)

Within the framework of f(R, T) gravity, we ex-
plored a Kantowski-Sachs cosmological model that
incorporates interactions between a charged perfect
fluid, massless scalar field, and source-free electro-
magnetic field. Our analysis of this model yielded
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specific physical and dynamical parameters, as pre-
sented in Eq. (28), which provide valuable insights
into the model’s behavior. Hubble Parameter:

H =
(n+ 2)

3τ
[

1

2(n2 − 1)
+

k1
τ (2n+2)

]1/2, (29)

scalar expansion and shear scalar:

θ =
(n+ 2)

τ
[

1

2(n2 − 1)
+

k1
τ (2n+2)

]1/2, (30)

σ2 =
2(n− 1)2

3τ2
[

1

2(n2 − 1)
+

k1
τ (2n+2)

], (31)

average scale factor:

a = τ
(n+2)

3 , (32)

spatial volume:

V = τ (n+2). (33)

Fig. 1: Average scale factor (a) vs. cosmic time (τ) in

Gyrs.

Fig. 2: Expansion scalar (θ) vs. cosmic time (τ) in Gyrs.

Average anisotropy parameter,

Am = 2[
n− 1

n+ 2
]2. (34)

Fig. 3: Shear scalar (σ2) vs. cosmic time (τ) in Gyrs.

Fig. 4: Spatial volume (V) vs. cosmic time (τ) in Gyrs.

The deceleration parameter:

q = −1 +
3

2(n+ 2)

[
1

(n2 − 1)
+

2k1(n+ 2)

τ (2n+2)

]

×

[
1

2(n2 − 1)
+

k1
τ (2n+2)

]−1
.

(35)

The evolution of the average scale factor is depicted in
Fig. 1, which reveals a divergence in finite time. No-
tably, the scale factor’s behavior is consistent across
various values of n in this model. Fig. 2 illustrates
the Hubble parameter’s decrease over time.

The expansion and shear scalars exhibit divergent
behavior at the initial epoch, as evident in Figs. 2
and 3. Eq. (30) indicates that the expansion scalar is
infinite at T = 0, suggesting a point-type singularity
at the initial epoch. This implies that the universe
begins with a negligible volume and infinite expansion
rate.

Fig. 3 shows that the shear scalar is positive, de-
creasing over time, and converges to zero as τ ap-
proaches infinity. The spatial volume, as seen in
Fig. 4, increases with time, indicating an expanding
universe. Fig. 5 illustrates deceleration of parame-
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Fig. 5: Deceleration parameter (q) vs. cosmic time (τ)
in Gyrs.

Fig. 6: Hubble parameter (H) in km/s/Mpc vs. cosmic

time (τ) in Gyrs.

ter’s transition from positive to negative values over
time, eventually approaching −1 as τ approaches in-
finity.

Our cosmological model exhibits a transition from
an initial decelerating phase to the current accelerat-
ing phase. The anisotropy (Am) remains constant,
indicating anisotropic behavior throughout the uni-
verse’s evolution.

Recent observational data from SNeIa and CMBR
suggest accelerating models, with the present value of
the deceleration parameter q0 falling within the range
−1.27 < q < 2. Our model shows consistency with
observational values of the Hubble and deceleration
parameters.

4. DYNAMICAL PROPERTIES OF THE
MODEL

In Eq. (35), we derived an expression for the decel-
eration parameter, which exhibits both positive and
negative values over a specific time interval for cho-
sen constant values. This prompted us to explore
exact solutions for pressure and density in both de-

celerating and accelerating universe scenarios across
four distinct cases. To achieve this, we employed the
equation of state, ω = p/ρ, with specific ω values, in
conjunction with the previously assumed relationship
between metric potentials, as given in Eq. (24).

� ω = 1, Zeldovich fluid or stiff fluid,

� ω = 1/3, disordered radiation,

� ω = 0, dust fluid and

� ω = −1, dark energy.

4.1. Zeldovich Fluid Model

To find the precise solution to the field Eqs. (19) -
(22), we employed the second constraint, which takes
form of an equation of state for a stiff fluid. We have:

p = ρ. (36)

Using Eq. (36) in Eq. (19), the pressure and density
of the model (Eq. (28)) are:

p = ρ =
1

(k + 2λ)τ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]

−

[
k22(k + 4λ)

2(k + 2λ)τ (2n+2)
− M2

8πτ2n+2

]
.

(37)

Fig. 7: Pressure (p) vs. cosmic time (τ) in Gyrs.

Upon examining Eq. (37), we notice that both the
pressure and energy density of matter increase with
time τ . Initially, the pressure assumes a small nega-
tive value, which grows as time progresses. A signif-
icant transition occurs at τ > 1.33, where the pres-
sure’s sign changes from negative to positive. In the
context of modern cosmology, the negative pressure
is associated with accelerated expansion. Our analy-
sis reveals that the universe undergoes an accelerated
phase.
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4.2. Dust Fluid Model

For a dust fluid, we have:

p = 0. (38)

Using Eq. (38) in Eq. (19), the pressure and density
of the model (Eq. (28)) becomes:

ρ =

[
k22(k + 4λ)

2λτ (2n+2)
− M2(k + 2λ)

8πλτ2n+2

]

− 1

λτ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]
.

(39)

Fig. 8: Density (ρ) vs. cosmic time (τ) in Gyrs.

According to Eq. (39), the energy density exhibits
large positive values at early times, gradually de-
creasing to zero at a certain point. Notably, the
energy density then undergoes a sign change, tran-
sitioning from positive to negative values over time.
Ultimately, it settles at a small negative value in the
later stages of the universe’s evolution.

4.3. Disordered Radiation Model

For disordered radiation EoS is:

ρ = 3p. (40)

Using Eq. (40) in Eq. (19), the pressure and density
of the model (Eq. (28)) yields:

p =
1

kτ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]

+

[
3M2(k + 2λ)

8πkτ2n+2
− 3k22(k + 4λ)

2kτ (2n+2)

]
,

(41)

ρ =
3

kτ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]

+

[
3M2(k + 2λ)

8πkτ2n+2
− 3k22(k + 4λ)

2kτ (2n+2)

]
.

(42)

From Eq. (42) one can observe that the pressure and
energy density are positive for τ > 1.33 and they
increase with time τ .

4.4. Dark Energy Model

For dark energy EoS parameter ω = −1, we have

p = −ρ. (43)

Using Eq. (43) in Eq. (19), the pressure and density
of the model (Eq. (28)) become:

p= 1
(k+4λ)τ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]

+

[
M2(k + 2λ)

8π(k + 4λ)τ2n+2
− k22

2τ (2n+2)

]
,

(44)

ρ=− 1
(k+4λ)τ2

[
1 +

1

2(n2 − 1)
− k1(2n+ 1)

τ (2n+2)

]

−

[
M2(k + 2λ)

8π(k + 4λ)τ2n+2
− k22

2τ (2n+2)

]
.

(45)

Fig. 9: Density (ρ) vs. cosmic time (τ) in Gyrs.

Fig. 9 illustrates the evolution of energy density ρ
over time. Initially, ρ exhibits substantial positive
values, which gradually decrease to zero at a spe-
cific point. Beyond this point, the energy density
undergoes a sign reversal, transitioning from positive
to negative values. Ultimately, it stabilizes at a rel-
atively small negative value in the universe’s later
stages.

The pressure’s behavior is also noteworthy. In the
early universe, pressure assumes a negative value, but
as time progresses, it increases and eventually ap-
proaches a positive constant value in later periods.

5. CONCLUSION

In this paper, we have considered a Kantowski-
Sachs cosmological model within the framework of
Modified gravity, utilizing an interacting field as the
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energy source. We derived exact solutions to the
field equations by assuming a relationship between
the metric potentials. This study examines the evo-
lution of a cosmological model, revealing a divergence
in the average scale factor in finite time. The model
exhibits a transition from initial decelerating phase
to accelerating phase, consistent with recent obser-
vational data from SNeIa and CMBR. The key fea-
tures include a point-type singularity at the initial
epoch, an expanding spatial volume, and anisotropic
behavior throughout the universe’s evolution. The
model’s predictions for the Hubble and deceleration
parameters align with observational values, support-
ing the validity of this cosmological framework. The
deceleration parameter, is revealing its dynamic be-
havior across both decelerating and accelerating uni-
verse scenarios. By exploring the exact solutions for
pressure and density across four distinct cases, we
investigate the cosmological implications of varying
equation of state parameters and metric potentials.
Fig. 9 shows the evolution of energy density ρ over
time, starting with positive values that decrease to
zero and then further to negative values. The energy
density stabilizes at a small negative value in the uni-
verse’s later stages. In contrast, the pressure begins
with a negative value in the early universe, increases
over time, and approaches a positive constant value
in later periods. This behavior is noteworthy and
provides insight into the universe’s evolution. The
transition in energy density and pressure reflects the
universe’s dynamic behavior.
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Tiwari, R. K. and Sofuoğlu, D. 2020, International Jour-

nal of Geometric Methods in Modern Physics, 17,
2030003

Tiwari, R. K., Mishra, S. K. and Sofuoglu, D. 2021, Jour-
nal of Applied Mathematics and Physics, 9, 847

Tiwari, R. K., Shukla, B. K., Sofuoğlu, D. and Kösem, D.
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Originalni nauqni rad

Ova studija istra�uje kosmoloxki model
Kantovski-Saks (Kantowski–Sachs) u okviru mo-
difikovane gravitacije, koriste�i interak-
tivno poǉe kao izvor energije. Interaktiv-
no poǉe se sastoji od linearne kombinaci-
je elektromagnetne, bezmasene skalarne i nae-
lektrisane komponente idealnog fluida. Na-
xa analiza obuhvata qetiri razliqita slu-

qaja: idealni fluid, neure�eno zraqeǌe, pra-
xinasti fluid i tamnu energiju. Uspostavǉa-
ǌem veze izme�u metriqkih potencijala, re-
xili smo jednaqine poǉa i istra�ili raspo-
dele pritiska i gustine koriste�i jednaqinu
staǌa. Tako�e smo sproveli sveobuhvatno is-
pitivaǌe kosmoloxkih i dinamiqkih parame-
tara.
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