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SUMMARY: We develop a 3D hydrodynamical code written in C programming
language to study the expansion of supernova remnants (SNRs) in the surrounding
medium. It is based on the MUSCL-Hancock finite volume scheme with the HLLC
Riemann solver. The code initiates the supernova remnant already in the Sedov
phase and simulates hydrodynamics of the subsequent remnant expansion. The
simulation is optimized for studies of large scale interaction of a supernova remnant
with the interstellar medium (ISM). After a detailed description of the code, and
three tests of hydrodynamics, we present the results for a single remnant expanding
into a uniform and fractally structured ISM, as the first application of the code.
The simulation of SNR expanding in a uniform medium is compared with the Sedov
law of expansion and Sedov self-similar solution to density, velocity and pressure
profiles. The results indicate that the simulation presented here reproduces well
the hydrodynamics of the supernova remnant expansion and is very practical due
to its simplicity and speed. The SNR evolution in fractal ISM shows that clumps
disturb the blast wave and produce interference of bow shocks, resulting in turbulent
motions and inhomogenities inside the remnant.
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1. INTRODUCTION

As a result of the supernova explosion a colli-
sionless shock wave forms and expands into the sur-
rounding interstellar medium (ISM) with speeds of
up to ≈ 104 km s−1 (Raymond 1984). The ISM
swept up by the shock is heated and, together with
the supernova ejecta, fills the interior of this shock
wave surrounded structure called supernova remnant
(SNR). SNRs emit radiation over almost the entire
span of the electromagnetic spectrum by synchrotron
and thermal radiation mechanisms.
1.1. SNRs and ISM

Simplistic view of hydrodynamics of SNRs
typically discerns four evolution phases for these ob-
jects (Woltjer 1972):

(i) Free expansion – the ejecta can be approxi-
mated to expand freely into the surrounding
ISM, forming a shock behind which the swept-
up matter starts accumulating.

(ii) Adiabatic (Sedov) phase – the swept-up mat-
ter is massive enough to take domination in
the SNR dynamics, while the irradiated en-
ergy is still small compared to the explosion
energy. Due to accumulation of the surround-
ing matter, the shock decelerates at rate R ∝
t2/5, conserving the energy.

(iii) Radiative cooling – at this point the radiative
energy losses become significant and the post-
shock matter cools efficiently. As its thermal
pressure decreases, the shell expansion decel-
erates preserving the radial momentum.

c© 2019 The Author(s). Published by Astronomical Observatory of Belgrade and Faculty of Mathematics, University of
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(iv) Dissipation – eventually, the expansion slows
down to the velocities of random motions of
ISM (∼ 10 km/s) and the remnant dissipates
into ISM.
The total evolution lasts on the scales of ∼

105 − 106 yr. It is evident from this simple classifi-
cation of evolutionary phases that hydrodynamics of
SNR is heavily dependent on the ISM density (be-
sides the energy of explosion), especially for the Se-
dov phase and later phases of evolution. This also
reflects in a significant manner to the SNR properties
and is evident in the empirical data since the den-
sity of ISM generally correlates with radiation fluxes
due to the physics of radiation mechanisms involved
(Pavlović et al. 2018, Arbutina and Urošević 2005,
Berkhuijsen 1986).

The matter overrun by the SNR shock wave
is more energized and clearly has a higher profile of
observational signatures than the undisturbed sur-
rounding ISM. A better understanding of the SNR–
ISM interaction will enable the use of SNRs as prox-
ies for the ISM structure. For recent studies in
this direction see Orlando et al. (2019), Zhang and
Chevalier (2019), Yu et al. (2015) and Slavin et al.
(2017).

1.2. Hydrodynamical simulations of SNRs

Simulating different conditions of SNRs can be
a good opportunity to investigate the impact of ISM
environments on the SNR morphology or radiation.
This way, the peculiar features of many observed su-
pernova remnants can be better understood.

The astrophysical simulations are broadly di-
vided to particle-based and grid-based, which is in
essence a Lagrangian or Eulerian approach, respec-
tively. In the former case, the fluids of interest are
simulated as a conglomerate of individual particles
that are subjected to gravitational and hydrodynam-
ical acceleration while the latter approach calculates
the fluid parameters at specific locations in space.
For the purpose of a Sedov blast phenomena, the
grid-based approach turned out much more success-
ful than the particle-based approach (see Tasker et
al. 2008). The present state-of-the-art grid-based
simulation software implements the adaptive grid
(mesh), where the grid resolution changes during the
simulation, which enables greater dynamical range at
a cost of a reasonably slower computation rate. At
present, the well-known such codes, that are exten-
sively used for simulating supernova remnants, are
FLASH (Fryxell et al. 2000), PLUTO (Mignone et
al. 2007, 2012), RAMSES (Teyssier 2002), ENZO
(Bryan et al. 2014), etc. These codes offer differ-
ent computational modules with parallel computing
possibility and excellent accuracy. They can perform
multitude of physical processes in various astrophys-
ical problems. Consequently, some of them require
installation of external libraries or some other neces-
sary software.

The aim of this paper is to present the very
basic hydrodynamical code that can be used for sim-
ulating expanding SNRs. It should be easily applied
to generate large simulated samples of SNRs in or-

der to further advance the studies of the SNR–ISM
interaction. The code is written in the C program-
ming language and has a simple run settings and
results output that are standard for each C-code. It
requires no installation procedure and is compiled
with a standard C compilers such as GCC. To achieve
maximum comprehension, the code is described and
explained in detail. It is not meant to be competi-
tive with the state-of-the-art codes described above,
but rather an easy to implement, simple and efficient
approach to simulate the SNR–ISM interaction that
gives similar results like more complex codes. The
code is available to all interested practitioners in the
field by just sending a demand to the author of this
work.

We use a grid-based approach – the finite
volume method of computational fluid dynamics
(CFD). The next section is a short introduction to
equations of fluid dynamics. In Section 3, we explain
the basic theory of numerical methods for CFD and
present the MUSCL-Hancock method. This will be
presented in more detail in order to make a transpar-
ent guideline through the methodology of the code,
making it suitable for future developments and up-
grades by the community. In Section 4, we perform
and discuss the test runs from the literature. The
next two sections give description of the first appli-
cation of the code: an adopted model of the inter-
stellar environment will be presented in Section 5,
and in Section 6 we will give details of the simula-
tion setup. Finally, the conclusions of this work are
given in the last section.

2. EQUATIONS OF FLUID DYNAMICS

Here we present the time-dependent three di-
mensional Euler equations that govern the dynam-
ics of a compressible fluid, such as interstellar gas,
given in a form of a system of non-linear hyper-
bolic conservation laws. These equations can be
written using the two types of variables: primitive
and conservative. The primitive variables are den-
sity ρ(x, y, z, t), x-, y- and z-components of velocity
u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t), and pressure
p(x, y, z, t). The conservative variables are density
ρ(x, y, z, t), x-, y- and z-components of momentum
ρu(x, y, z, t), ρv(x, y, z, t) and ρw(x, y, z, t), and total
energy per unit volume E(x, y, z, t). The system of
five conservation laws in differential form reads:

ρt + (ρu)x + (ρv)y + (ρw)z = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y + (ρvw)z = 0,

(ρw)t + (ρuw)x + (ρvw)y + (ρw2 + p)z = 0,

Et + [u(E + p)]x + [v(E + p)]y + [w(E + p)]z = 0,

(1)

where indices t, x, y and z represent partial deriva-
tives (e.g. ρt ≡ ∂ρ/∂t). The energy E is the sum of
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internal and kinetic energy per unit volume:

E = ρe +
ρ

(
u2 + v2 + w2

)

2
. (2)

Here, e is the specific internal energy. This system
of equations can be written in a compact form by
introducing the column vector U(x, y, z, t) of con-
served variables and flux vectors F(U), G(U) and
H(U) in the x, y and z direction, respectively. Now,
the equations read:

Ut + Fx + Gy + Hz = 0, (3)

where

U =




ρ
ρu
ρv
ρw
E




, F =




ρu
ρu2 + p

ρuv
ρuw

u(E + p)




,

G =




ρv
ρuv

ρv2 + p
ρvw

v(E + p)




, H =




ρw
ρuw
ρvw

ρw2 + p
w(E + p)




.

(4)

Notice that in the system Eq. (1), including
Eq. (2), there are more unknowns than equations, so
a closure condition is needed to completely describe
the physical process. In other words, there must be
another expression that relates the internal energy e
to other given quantities. That expression will be the
equation of state which describes the nature of the
medium. The interstellar medium is assumed to be
calorically ideal gas, with caloric equation of state:

e =
p

ρ(γ − 1)
, (5)

where γ is the so called adiabatic index, or ra-
tio of specific heats, with γ = 5/3 describing the
monoatomic gas. Although the adiabatic index in
general is non-constant due to thermal and chemical
processes (see Vaidya et al. 2015), it is considered
constant in the presented simulation.

3. NUMERICAL METHODS

All finite volume (or finite difference) meth-
ods for non-linear systems of hyperbolic laws rely on
the first such method presented by Godunov (Go-
dunov 1959). For the reason of understanding and
simplicity, we will shortly explain the basic concept
of Godunov’s method on time-dependent one dimen-
sional Euler equations. For the exhaustive reading
one should see the book by Toro (2009).

Lets say we have a spatial domain x =
[0, L] discretized in M computational cells Ii =

[xi− 1
2
, xi+ 1

2
] of regular size ∆x = xi+ 1

2
− xi− 1

2
=

L/M with i = 1, ...,M , and a time domain t = [0, T ]
discretized in variable ∆t time steps. At a cer-
tain time tn, where the upper index n is the num-
ber of time step, all the data is written in a form
Un

i = U(xi, t
n). The Godunov’s method for evolv-

ing this solution to Un+1
i = U(xi, t

n + ∆t) is given
by this formula:

Un+1
i = Un

i +
∆t

∆x
[Fi− 1

2
− Fi+ 1

2
]. (6)

The time step size ∆t is calculated in every time step
separately, because it depends on a maximum speed
of a signal inside the domain at a given time step.

One can immediately see that the essential in-
gredient of Godunov’s method is obtaining the fluxes
on boundaries between the cells. This can be done
using the state vectors on the left and right sides of
the boundary and it is referred to as the Riemann
problem. The flux Fi+ 1

2
is calculated by solving the

Riemann problem RP (Un
i ,Un

i+1). The methods for
solving the Riemann problems are called Riemann
solvers. Because the state values Un

i inside a cell
domain are piece-wise constants, the method of Go-
dunov is of first order accuracy.

3.1. MUSCL-Hancock method

In our simulation, we use MUSCL-Hancock
scheme, an unsplit finite volume method for compu-
tational fluid dynamics. MUSCL stands for Mono-
tonic Upstream-Centred Scheme for Conservation
Laws. It is a second order extension of the Godunov
first order upwind method in which the solution is
updated in the same way as in the Godunov method,
but in three dimensions it looks like this:

Un+1
i,j,k = Un

i,j,k +
∆t

∆x
[Fi− 1

2 ,j,k − Fi+ 1
2 ,j,k]

+
∆t

∆y
[Gi,j− 1

2 ,k −Gi,j+ 1
2 ,k]

+
∆t

∆z
[Hi,j,k− 1

2
−Hi,j,k+ 1

2
].

(7)

Given that a uniform grid is used, ∆x = ∆y = ∆z
stands in our simulation.

The whole point of this scheme is to deter-
mine the intercell fluxes F, G and H more precisely
than the classical Godunov method. In order to do
so, there are three main steps which lead to their
calculation:

(i) Data reconstruction.
(ii) Evolution.
(iii) Riemann problem.

In the first and third step there are different
choices of methods one can use, so, by describing
these steps, we will also present the methods we
adopted.
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3.1.1. Data reconstruction

The main task of this step is to replace the
constant distribution of state values Un

i inside every
cell with a convenient linear function so that the in-
tegral value stays the same (i.e. to replace piece-wise
constant states with piece-wise linear functions, see
Fig. 1). By “convenient” we mean to calculate the
slope of this linear function using the state values
of neighboring cells and the considered cell (in all
three directions, independently). The point is to re-
construct the distribution of the conserved variables
among cells as closely as possible to the real distribu-
tion. This is of key importance for a more accurate
calculation of intercell fluxes. Actually, we can say
that this type of reconstruction ensures the second
order spatial accuracy of the scheme.

Fig. 1. The ilustration of piece-wise linear data re-
construction. The (bold) slopes represent the recon-
structed states Ui using the van Leer slope limiter.

The reconstruction of these slopes is not a triv-
ial task, because it must satisfy the total variation
diminishing (TVD) condition which demands that
no new local extrema is introduced after data re-
construction to avoid spurious oscillations (see Toro
2009). Thus, in certain parts of the domain, the
slopes must be limited so that the left or right value
cannot become a new local extremum among the
cells. There are several methods to evaluate such
limited slopes and the main few of them are:

(i) minbee (or minmod)

φmb(r) =





0, r < 0,

r, 0 ≤ r < 1,

1, r ≥ 1.

(8)

(ii) superbee

φsb(r) =





0, r < 0,

2r, 0 ≤ r < 1
2 ,

1, 1
2 ≤ r < 1,

r, 1 ≤ r < 2,

2, r ≥ 2.

(9)

(iii) van Leer

φvl(r) =

{
0, r ≤ 0,
2r

1+r , r > 0.
(10)

where:

r = r(i) =
Un

i −Un
i−1

Un
i+1 −Un

i

(11)

and φ(r) is the slope limiter that multiplies the slope
(Un

i+1−Un
i )/∆x in order to obtain the limited slope.

Here, index i represents the considered coordinate.
Finally, after obtaining slopes, the values at the left
and right boundary of the cell can be extrapolated:

Ux−
i,j,k = Un

i,j,k −
1
2
∆i, Ux+

i,j,k = Un
i,j,k +

1
2
∆i,

Uy−
i,j,k = Un

i,j,k −
1
2
∆j , Uy+

i,j,k = Un
i,j,k +

1
2
∆j ,

Uz−
i,j,k = Un

i,j,k −
1
2
∆k, Uz+

i,j,k = Un
i,j,k +

1
2
∆k,

(12)

where:

∆l = φvl(Un
l+1 −Un

l ), l = i, j, k, (13)

represents the extrapolation term in the respective
direction. Note that ∆l is a vector with five compo-
nents. The signs “−” and “+” in the exponents rep-
resent the left and right extrapolated values within
a cell. These values are referred to as boundary ex-
trapolated values.

3.1.2. Evolution

In this step the boundary extrapolated values
are evolved for a time step 1

2∆t to achieve the second
order time accuracy of the scheme:

Ûl±
i,j,k = Ul±

i,j,k +
∆t

2∆x
[F(Ux−

i,j,k)− F(Ux+
i,j,k)]

+
∆t

2∆x
[G(Uy−

i,j,k)−G(Uy+
i,j,k)]

+
∆t

2∆x
[H(Uz−

i,j,k)−H(Uz+
i,j,k)],

(14)
for l = x, y, z. Note that the last three terms for any
l are the same, because the fluxes are obtained from
the boundary extrapolated values within the same
cell.

3.1.3. Riemann problem

Now we have a conventional Riemann problem
to solve in order to obtain the intercell flux Fi+ 1

2
.

The left and right state of the Riemann problem at
the interface xi+ 1

2
are UL ≡ Ûx+

i and UR ≡ Ûx−
i+1.
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Solving a Riemann problem is a procedure to
determine the intermediate state(s) between two ini-
tial piecewise constant states, with a single disconti-
nuity at the contact, after some time. It is explained
very well by the Sod shock tube experiment and
also theoretically (Sod 1978, Toro 2009). The Rie-
mann problem can be solved exactly (the Riemann
exact solver), but as it is computationally expensive,
many approximate Riemann solvers have been de-
veloped. Some of them are HLLE, HLLC, PVRS,
Roe solver, Osher solver, etc. Our simulation uses
the HLLC Riemann solver (short of Harten-Lax-van
Leer-Contact) so we will shortly present its proce-
dure for obtaining the intercell flux.

Fig. 2. The three-wave solution of the Riemann
problem. The region between SL and SR, the star re-
gion (named after the asterisk in index), is divided
in two regions by the middle wave (contact disconti-
nuity) of speed S∗.

The HLLC solver assumes, for the solution,
a wave configuration of three waves separating four
state vectors, namely UL, U∗L, U∗R and UR (see
Fig. 2). Depending on the wave structure, one of
these states will be the intermediate state with its
evaluated flux Fhllc

i+ 1
2
. To find the right flux one has

to perform the following three steps:
(i) Pressure estimate.

The pressure has no jump at the middle wave
(p∗L = p∗R) so there is just one pressure p∗ in
the star region, which can be estimated in dif-
ferent ways, one of which is (Shen et al. 2016):

phllc
∗ =

αRpL − αLpR − αLαR(uL − uR)
αR − αL

,

(15)
where:

αL = ρL(SL − uL),

αR = ρR(SR − uR).
(16)

For SL and SR see the next paragraph.
(ii) Wave speed estimate.

In this step the speeds of three waves SL, SR
and S∗ are estimated. These speeds can be

computed as (Shen et al. 2016):

SL = min(uL − aL, uR − aR),

SR = max(uL + aL, uR + aR),

Shllc
∗ =

αRuR − αLuL + pL − pR

αR − αL
,

(17)

where aL and aR are the left and right sound
speed.

(iii) HLLC flux.
Finally, the flux is computed as:

Fhllc
i+ 1

2
=





FL, 0 ≤ SL

F∗L, SL ≤ 0 ≤ S∗
F∗R, S∗ ≤ 0 ≤ SR

FR, 0 ≥ SR

, (18)

where:

FL = F(UL), FR = F(UR), (19)

and:

F∗L = FL + SL(U∗L −UL),

F∗R = FR + SR(U∗R −UR).
(20)

There are different methods for pressure and
wave speed estimation. For more details on the HLL
and HLLC solver see Shen et al. (2016) and Toro
(2009). Once the intercell fluxes F, G and H are ob-
tained, the solution can be updated to the next time
step according to Eq. (7).

3.1.4. Time step size

For a one dimensional problem, the time step
size ∆t must satisfy the condition

∆t ≤ ∆x

Sn
max

, (21)

where Sn
max is the largest wave speed throughout the

domain at time level n, calculated as:

Sn
max = max

i,j,k
{|un

i,j,k|+ an
i,j,k,

|vn
i,j,k|+ an

i,j,k, |wn
i,j,k|+ an

i,j,k}.
(22)

Here, an
i,j,k is the sound speed in the cell Ii,j,k at time

level n.
It is important not to violate the condition

Eq. (21) to avoid spurious oscillations, so there is
a number called the CFL coefficient (from Courant-
Friedrichs-Lewy condition), Ccfl ≤ 1, usually around
0.9 so that

∆t = Ccfl
∆x

Sn
max

. (23)

However, in three dimensions there is more conserva-
tive constraint on the CFL coefficient due to scheme
stability reasons, Ccfl ≤ 1

3 , so we use the value of
0.25 (in all presented simulations).
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3.1.5. Pressure at cell boundary and
positivity preservation

The method described above works perfectly
when the internal energy is not a very small fraction
of kinetic energy. However, in cells where the kinetic
energy greatly dominates over the internal energy,
the slopes may be high enough to produce negative
pressure at a cell boundary. In this case, the sim-
ulation might collapse (e.g. the sound speed at the
boundary cannot be computed) or leads to unphys-
ical solution, so it is necessary to additionally limit
the slopes to bring the value of pressure at least to
zero. This is done by finding a slope limiting coef-
ficient k at the given boundary, such that the local
internal energy equals zero:

E ± k∆E − m2
tot

2(ρ± k∆ρ)
= 0, (24)

with:

m2
tot = (ρu± k∆(ρu))2 + (ρv ± k∆(ρv))2

+ (ρw ± k∆(ρw))2,
(25)

where ρ, ρu, ρv, ρw and E are the average states
(Un

i,j,k) of the cell in question and ∆ρ, ∆(ρu), ∆(ρv),
∆(ρw) and ∆E are the limited increments obtained
in the Section 3.1.1 (see Eq. (12)). The coefficient k
is obtained as solution to the quadratic Eq. (24),

k =
−B ±√B2 − 4AC

2A
, (26)

where:

A = 2∆E∆ρ− [∆(ρu)]2 − [∆(ρv)]2 − [∆(ρw)]2,

B =± 2[ρ∆E + E∆ρ− ρu∆(ρu)− ρv∆(ρv)

− ρw∆(ρw)],

C = 2Eρ− (ρu)2 − (ρv)2 − (ρw)2.
(27)

In Eqs. (24), (25) and (27), “±” covers the left (−)
and right (+) cell boundary.

From the two solutions for k, one should
choose 0 < k < 1. Then, the slope limiters φ (see
Section 3.1.1) for all five states in the cell should be
constrained to kφ, but just for the direction in which
the negative pressure occurs.

3.1.6. Boundary conditions

Besides the initial values, for updating the so-
lution by Godunov method, we need boundary con-
ditions in order to calculate fluxes at edges of the
simulation box. These conditions, which are set at
every time step, are problem specific and they usu-
ally belong to one of the three types:

(i) Reflective.
The states in boundary cells of this type are
like mirrors of the first neighboring cells inside

the domain. Let Un
0 and Un

M+1 be the left and
right boundary states of an one-dimensional
domain Un

i , i = 1, ...,M . Then, they have
values

Un
0 =




ρn
1

−(ρu)n
1

En
1


 , Un

M+1 =




ρn
M

−(ρu)n
M

En
M


 .

(28)
In a 3D case everything is the same except
that the components of momentum that are
parallel to the boundary surface keep the same
sign.

(ii) Transmissive.
This boundary condition allows the density,
momentum and energy to flow out of the do-
main with the velocity from the last cell. This
case is trivial, i.e. the boundary states are a
copy of the neighboring cell states.

Un
0 =




ρn
1

(ρu)n
1

En
1


 , Un

M+1 =




ρn
M

(ρu)n
M

En
M


 . (29)

(iii) Inflow.
In case of a constant inflow from one side of
the box, one should set the custom values for
the boundary cells.
The analogous method is used when obtain-

ing boundary extrapolated values at boundary cells.
For example, for a reflective boundary (ρu)n

0,R =
−(ρu)n

1,L (this is done after the evolution step). All
three types of boundary conditions will be utilized in
a test in Section 4.2.

4. VALIDATION TESTS

In order to validate the code, we perform three
tests that utilize the described in previous section.
The first one, called the Sod shock tube problem, is
a common test for validation of the HD/MHD codes.
The second test is crushing of a spherical cloud by a
flat shock wave and the third test shows an expansion
of the clumpy ejecta of the supernova explosion.

4.1. Test I - Sod shock tube problem

The Sod problem (Sod 1978) is a common and
basic test for the accuracy of HD codes, because it
shows the code’s ability to resolve the shock wave,
contact discontinuity (CD) and rarefaction wave. For
an accurate code it is of crucial importance to cap-
ture the shocks and CDs within a small number of
cells (or zones) and to produce the correct profile for
rarefaction. Higher the number of cells across the
shock or CD – higher the code’s diffusivity, which
means that the real effects like the Kelvin-Helmholtz
(KH) and Rayleigh-Taylor (RT) instabilities are go-
ing to be harder (or even impossible) to produce.
The test will show that the diffusivity much depends
on the choice of the type of data reconstruction.
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The Sod problem is the one-dimensional flow
discontinuity problem and here it will be performed
exactly as in Section 7.2 of Fryxell et al. (2000). The
1D domain of the unit length is divided in 256 cells.
The fluid, initially at rest, has a density and pressure
jump in the middle of the domain. The left and right
initial states are:


ρL

uL

pL


 =




1
0
1


 ,




ρR

uR

pR


 =




0.125
0

0.1


 , (30)

and the ratio of specific heats is γ = 1.4.
The results at t = 0.2 are shown on Fig. 3

for the van Leer (left) and superbee (right) recon-
structions. Fig. 3 shows the density, specific inter-
nal energy and velocity profiles. In both left and
right panels it can be seen that the shock wave is
captured within ∼ 2 − 3 cells, but for the contact
discontinuity the difference between two reconstruc-
tions is much bigger. For the van Leer limiter CD is
resolved with ∼ 8 cells while using the superbee lim-
iter reduced this region to ∼ 4 cells (for comparison,
in the FLASH code test from Fryxell et al. (2000),
CD also covers just ∼ 2−3 cells). The consequence is
that the van Leer limiter produces much more diffuse
solutions, which will be more clearly seen in Test II of
this section. However, the superbee limiter is known
to often produce spurious oscillations near disconti-
nuities and tends to produce steps in smooth regions

(it’s too compressive). In Test II it will be used in
comparison with van Leer to illustrate the difference
in diffusivity.

4.2. Test II - Crushing of spherical cloud
by shock wave

This test is based on a simulation by Orlando
et al. (2005). The homogeneous spherical cloud of
radius 1 pc, density 1 H cm−3 and temperature 103 K
is in pressure balance with an ambient medium of
density ρ0 = 0.1 H cm−3 and temperature of 104 K.
The flat shock wave of Mach number M = 50 is
approaching and crushing the cloud. The density,
velocity and pressure in the upstream are:

ρ =
γ + 1
γ − 1

ρ0,

u =
2

γ + 1
vsh (vsh = Ma),

p =
2

γ + 1
ρ0v

2
sh.

(31)

The simulation box covers just one quadrant
of the cloud, whose center is in (x, y, z) = (0, 0, 0).
The boundaries at x = 0 and y = 0 are reflective,

Fig. 3. The results of the 1D Sod shock tube test at t = 0.2 with the van Leer (left) and superbee (right)
slope limiters. Figure shows profiles of density, specific internal energy and velocity.
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x = xmax, y = ymax and z = zmax are transmis-
sive, and z = zmin is the constant inflow of the shock
wave. The box size is 2× 2× 5.5 pc with resolution
of 200×200×550 cells. In order to avoid a stairs-like
density distribution at the edge of the cloud, these
densities are calculated as the averages of 10×10×10
subcells for every grid-cell placed at the cloud border.

The results are showed in Fig. 4, with left and
right half panels representing van Leer and super-
bee reconstructions, respectively. At first, it is seen
that interaction of the blast wave with the cloud has
produced a transmitted and a reflected (bow) shock.
Soon, the shock wave encompasses the cloud, com-
pressing it, followed by a conical self-reflection of the

Fig. 4. Density slices from the cloud crushing test. The frames are caught at 3500, 5500, 9000 and 13000
yr after the beginning of simulation. If we adopt the characteristic cloud-crushing time from Orlando et al.
(2005), τcc = 5400 yr, these times are 0.62τcc, 0.99τcc, 1.64τcc and 2.38τcc (from the shock-cloud collision).
Left and right half panels represent van Leer and superbee reconstructions, respectively.

72



A HYDRODYNAMICAL 3D SIMULATION OF SUPERNOVA REMNANTS

primary shock. Then the cloud starts expanding and
developing hydrodynamic instabilities due to vortic-
ity deposited by the primary shock. Finally, the de-
formation of the cloud eventually leads to its frag-
mentation and destruction. These images match
quite good with the Fig. 3 in Orlando et al. (2005),
considering the resolution of 100 cells per cloud ra-
dius (they had 132), which is the minimum adequate
resolution predicted by Klein et al. (1994) and Mac
Low et al. (1994). Apparently, the main distinction
between the van Leer and superbee reconstructions
is the amount of produced turbulence and instabili-
ties, origins of which are differences in diffusivity (on
the left half panels, the instabilities at the borders of
the cloud are suppressed).

4.3. Test III - Expansion of the clumpy ejecta

This test is based on a simulation of Orlando
et al. (2012) (their model EX-C1.5-D1). Dwarkadas
and Chevalier (1998) represented the ejecta density
structure of Type Ia SNe by exponential profile. For
deflagration models it is a power-law profile with an
index n = 7 (Chevalier 1983, Nomoto et al. 1984).
Our initial setup consists of spherically symmetric
ejecta with an exponential density profile, expanding
with the velocity that is proportional to the radius
(pseudo-Hubble flow, Hole et al. 2010):

ρ(r) = Ae−r/R,

v(r) =
r

R
ve,

(32)

where R is the initial radius of the sphere and ve
is the ejecta velocity at R. If the ejecta mass
Me(= 1.4M¯) and kinetic energy Ek are set, then

A =
Me

4πR3(2− 5/e)
,

ve =
(

4e− 10
24e− 65

Ek

Me

) 1
2

.

(33)

The kinetic energy is set to 99% of the total energy
(E0 = 1051 erg) in every cell. Further, the density of
the ejecta is perturbed from cell to cell by a random
factor between 0.625 and 1.5, with power-law prob-
ability distribution with index n = −1 (after the
perturbation, the integrated ejecta mass stays Me).
The perturbation of density also affects the momen-
tum and total energy in the cells, but the pressure
stays smooth. This is how the clumpy structure of
the ejecta, which triggers Rayleigh-Taylor instabili-
ties at the contact discontinuity, is modeled (Orlando
et al. 2012, Pavlović 2017). The ambient medium is
homogeneous gas with density of 0.05 H cm−3 and
temperature of 103 K.

The remnant is initialized as one octant of a
sphere in order to achieve higher resolution for the
same execution time. This requires that x = 0, y = 0
and z = 0 boundaries are reflective, while x = xmax,
y = ymax and z = zmax boundaries are transmissive.

4.3.1 Remapping

Unlike the Test II case, in Test III the spatial
domain of the expanding SNR constantly grows, so
due to the uniform grid, after some time it would
be an exhausting task (in terms of time consump-
tion) to simulate the SNR with the starting cell size.
That is the reason why the adaptive mesh refine-
ment was invented. Here, we present the approach
known as remapping technique in which the mesh
is adapting periodically to the remnant’s size, so it
keeps the number of cells constant throughout the
simulation run. For example, it is used in Ono et
al. (2013) for expanding the domain of the simula-
tion from small central region of the star to its whole
volume. The idea is to gradually extend the compu-
tational domain, keeping the total number of cells
by remapping the physical quantities. In such a way,
for the same computational cost, one can continue
simulating phenomena in constant expansion. Ono
et al. (2013) use the expansion factor of 1.2, sug-
gesting that larger values (e.g. 2, used in Kifonidis
et al. 2006) can introduce hydrodynamical diffusiv-
ity in some parts of domain. We used the factor of
2 and after checking the conservation of total mass,
momentum and energy we found that one remap-
ping does not introduce errors larger than factor of
∼ 10−5.

At the beginning of the run, the initial ejecta
(0.5 pc in radius) are placed in a 2.5×2.5×2.5 pc box
with resolution of 250×250×250 cells (so the initial
radius covers 50 cells). When the remnant reaches
a boundary of the box, the code performs rescaling
of the whole box by turning 2× 2× 2 cubes of cells
into single cells (of double edge size) and adding the
new cells so the grid keeps 250×250×250 cells while
the edge of the box doubles. Now, the run continues
until the box boundary is reached again, and so on.
We can refer to this procedure also as mesh merging.
The merging is done by averaging the state values
from eight cells. The added new cells are initialized
with the states of the ambient medium. In the case of
the inhomogeneous medium, which will be presented
in Section 5, the new ambient medium, added in this
way, is taken from the prepared data files.

This method does not affect the conservative
nature of the scheme, it just adapts the resolution so
the remnant at any scale can be efficiently simulated.
Since the MUSCL-Hancock scheme is of second or-
der accuracy, it can quickly converge to the satisfying
level of accuracy with increasing resolution.

In Fig. 5, after nearly 1000 yr from the simu-
lation start, we see the developed Rayleigh-Taylor in-
stabilities at the contact discontinuity. Before reach-
ing this size (8 pc in radius), there were two remap-
ping steps when the remnant reached the radii of 2.5
and 5 pc. Without remapping, the number of cells
per dimension would have to be doubled for the rem-
nant to reach the double size, so it would require 23

times longer execution time. In addition, remapping
also doubles the time step size, making the simula-
tion 16 times faster than without remapping. Thus,
this simulation is able to be accomplished on a stan-
dard performance laptop in less than 4 hours.
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Fig. 5. Density slice from the clumpy ejecta expan-
sion test. The SNR is ≈ 920 yr old. The Rayleigh-
Taylor instabilities (mushroom-shaped structures)
developed in the intershock region.

5. INTERSTELLAR MEDIUM

The simulations of SNRs are carried out in
both uniform and inhomogeneous medium. In the
case of uniform medium, the density is set to ρ0 =
0.25 H cm−3 with a temperature T0 = 104 K. These
numbers are typical values for warm ISM and are
also used in Slavin et al. (2017) who simulated su-
pernova remnants in a cloudy environment. Since
the medium is set to have no momentum and ki-
netic energy, all energy is the internal (pressure en-
ergy). Unlike Slavin et al. (2017), who created a
cloudy medium by randomly distributing the homo-
geneous spherical clumps of the same higher density
(25 H cm−3), but of different sizes, we model the
molecular cloud by distributing the density as a hi-
erarchical structure, creating the smooth fractal dis-
tribution of very different densities. Another way of
modeling the inhomogeneous medium is given in Yu
et al. (2015) in an MHD study of SNR expanding in
a turbulent plasma with a relatively small amplitude
of turbulence.

The modeling of inhomogeneous medium will
be presented in the next two sections.

5.1. Model of molecular cloud

Apart from the uniform medium, the SNR
simulations will be run in inhomogeneous medium
that resembles the molecular clouds. Here, we
present a model of such medium which is based on
the work of Elmegreen (1997) and developed for ap-
plication on SNRs in Kostić et al. (2016). As the
researches from past few decades indicate, the in-
terstellar medium, especially molecular clouds, show
some kind of fractal structure (Elmegreen and Fal-
garone 1996, Stutzki et al. 1998, Blitz and Williams

1999). This has been confirmed by observations and
simulations of ISM, and it is probably result of turbu-
lence driven motions within the medium (Federrath
et al. 2009).

By definition, the fractal structure is indepen-
dent of the length scale. That’s also the basic idea of
making the fractal cloud in Elmegreen (1997). The
method consists of placing N random points in a box,
then placing the next N random points in a smaller
boxes around the every of original points, and doing
it repeatedly H times. Every box from a certain level
of such hierarchy is L times smaller in edge length
than the box from the previous level. At the end,
just the points from the last level (their number is
NH) will be used as seeds for making the density
distribution in the box.

The numbers N and H are chosen according
to the simulation requirements, N = 15 and H = 4.
More on these choices in Results and Discussion sec-
tion. The number L is related to N as

N = LDf , (34)

where Df is called the fractal dimension. This quan-
tity, and its possible influence on hydrodynamical
evolution of supernova remnants, is discussed in more
details in Kostić et al. (2016) and references therein.
Shortly, it is a measure of fractal object’s space-filling
ability and characterizes the scaling ratio between
the structure and its substructures. Based on the re-
sults of Federrath et al. (2009), we adopt the value
Df = 2.3.

5.2. Clump profile

The density distribution in the box is created
in such a way that instead of every seed point (see
the previous section) we place a predefined spheri-
cal density field of finite radius, a clump, and if two
fields overlap they add to each other. After summa-
tion of all fields, the rest of the space in the box is
filled with the so called interclump density which is
set to 0.25 H cm−3. Also, if there is a place within
the clump domain with density below the interclump,
then it is also assigned with interclump density.

For this clump density distribution which
will produce the cloud-like structure, we adopted
two variants, Gaussian and Lorentzian distribution,
based on appearance in literature. For example,
Williams et al. (1994) state that clump profiles are
not greatly different from triaxial Gaussians. Also,
Stutzki and Güsten (1990) assumed Gaussian shapes
of clumps because of their Gaussian projections. On
the other hand, Williams et al. (1995) found that
clumps in Rosette Molecular Cloud have density pro-
files ρ(r) ∝ r−2 which is similar to the Lorentz pro-
file, taken that real clumps must have cores of fi-
nite density. Parmentier (2011) states that various
studies put forward the power-law density profile for
molecular clumps ρ(r) ∝ r−p, with index p being in
the range 1.5 ≤ p ≤ 2.5. So, we run the simulations
with both profiles, with the same spatial distribution
of clumps, to see the difference. Because the Lorentz
profile is wide, we make a profile cut-off at radius
rclump = 3 pc.
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To avoid placing the clumps too close to an
initial SNR sphere, all the seed points within radius
r ≤ 8 pc from the SNR center are rejected. This
secures the remnant from encountering the clumps
until its radius is 5 pc, which is needed due to stabi-
lization of initialized SNR profiles (see Section 6.1).

Regardless of the clump profile, the entire ISM
is placed in pressure equilibrium by assigning the
zero momentum and constant pressure to its cells.
Considering that the speed of the SNR expansion is
larger than that of motions in ISM, this assumption
doesn’t affect the SNR evolution. The value of the
outside pressure (pout) is the same as for the uniform
medium case:

pout

kB
= ρ0T0 = 2500 K cm−3, (35)

where kB is the Boltzmann constant, ρ0 is the con-
centration of atomic hydrogen in the interclump
medium, and T0 is its temperature (note that inter-
clump medium is practically identical to the uniform
medium case).

6. SIMULATION SETUP

This section reveals all details and settings of
the simulations. All relevant values and parameters
are given in Table 1.

Table 1. Simulation parameters.

Parameter Description Value

Model of molecular cloud

H model parameter 4
N model parameter 15
Df fractal dimension 2.3
σ Gaussian width 0.3
Γ Lorentzian width 0.1
rclump cut-off clump radius 3 pc
mcloud total mass in clumps 8.5 · 104 M¯
SNR and ISM

E0 SN energy 1051 erg
rsh initial SNR radius 1.5 pc
ρ0 interclump density 0.25 H cm−3

T0 interclump temp. 104 K
γ adiabatic index 5/3

Grid and scheme

resolution number of cells 3003

box final box edge 80 pc
initial box initial box edge 20 pc
Ccfl CFL coefficient 0.25
limiter reconstruction type van Leer

6.1. SNR initialization

The simulation starts with SNR of total en-
ergy E0 = 1051 erg and radius rsh = 1.5 pc (radius
at the shock). The initial states of the remnant are
set by inputting analitical Sedov profiles for density,
velocity and pressure into the grid (see the next sec-
tion). However, from the start there is a small ve-
locity and pressure perturbation that moves inwards
and fades away when SNR reaches ≈ 5 pc. Then,
the “true” numerical Sedov profiles are formed that
are a bit smeared compared to the analytical ones.
This smearing is normal numerical effect due to lim-
ited accuracy and finite cell size. The full spherical
remnant is placed at the center of the 20×20×20 pc
box with resolution of 300 × 300 × 300 cells. There
are two remapping steps, so the final size of the box
is 80 pc.

Before the remapping, there is a check whether
the remnant can be moved in the x, y or z direction
for a certain number of cells (with all the surrounding
medium, of course) to stay in the finer mesh as long
as possible. This ensures that the remnant will max-
imally develop before the remapping, so we avoid the
situation of remapping the remnants that are unde-
veloped on one side, which can happen in a certain
configurations of dense clumps.

In the next few paragraphs we introduce the
Sedov self-similar solutions.

6.2. Sedov solution

The following solution applies for the point
explosion in a uniform ambient medium. For a
blast wave propagating through a density gradient
ρ = ρ0r

−ω see Kamm and Timmes (2007). The
Sedov solution, given in Sedov (1959), is a set of
parametric equations for radius, density, velocity and
pressure. Sedov gave them in a general form as a
function of dimensionality ν, ratio of specific heats
γ, and a parameter V which is related to the po-
sition between the center of the explosion and the
shock wave. The range of variation of V inside this
domain is:

2
(ν + 2)γ

≤ V ≤ 4
(ν + 2)(γ + 1).

(36)

The next four formulas (simplified after inserting
ν = 3 and γ = 5/3) give the radius r, density ρ,
velocity v and pressure p, relative to their values im-
mediately behind the shock, as a function of V :

r

r2
=

(
10
3

V

)− 2
5

(
50
3

V − 4
)−α2

(5− 10V )−α1 ,

ρ

ρ2
=

(
50
3

V − 4
)α3

(4− 10V )α5 (5− 10V )α4 ,

v

v2
=

10
3

V
r

r2
,

p

p2
=

(
10
3

V

) 6
5

(4− 10V )α5+1 (5− 10V )α4−2α1 ,

(37)
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where:

α1 =
1
10
− 25

12
α2, α2 = − 2

13
, α3 =

9
13

,

α4 = 15α1, α5 = −6.
(38)

If we set energy of explosion E0, ambient density ρ0

and radius of a remnant rsh (or time after the explo-
sion t), we can obtain the Sedov profiles ρ(r), v(r)
and p(r) numerically from Eq. (37) using the follow-
ing relations:

r2 = rsh = 1.15
(

E0t
2

ρ0

) 1
5

,

vsh =
2
5

rsh

t
,

ρ2 =
γ + 1
γ − 1

ρ0,

v2 =
2

γ + 1
vsh,

p2 =
2

γ + 1
ρ0v

2
sh,

(39)

where vsh is speed of the shockwave. The first two
equations in Eq. (39) are the Sedov law of expan-
sion, and the expressions for ρ2, v2 and p2 are the
Rankine-Hugoniot shock jump relations for strong
shocks.

It is important to note that some corrections
have to be made to initial Sedov densities in the
vicinity of the remnant’s center because in the Se-
dov solution the internal energy (and also temper-
ature) at the center goes to infinity. These small
corrections to density ensure a finite temperature as
well as needfully lower sound speeds which are of im-
mense importance at calculation of the time step size
(as the sound speed actually dictates its size). This
is done by introducing the maximal speed of sound
allowed near the center of explosion:

amax =
√

p

γρ
, (40)

and then calculating ρ from this equation. The limit
amax is chosen not to affect the stability of the Sedov-
like profiles as the remnant evolves.

7. RESULTS AND DISCUSSION

First, we run the SNR in uniform medium to
see if the numerical profiles resemble theoretical Se-
dov profiles. The Fig. 6 shows the numerical profiles,
at radius r ≈ 5.5 pc, which are in excellent agreement
with analytical solutions. The peak of density at the
shock is ≈ 20% lower than theoretical value which
is normal for this resolution of the grid. The time
evolution of the SNR radius compared to the Sedov
law of expansion, given by the first equation of Eq.
(39), is showen in Fig. 7.

Fig. 6. Comparison of analytical Sedov profiles
(lines) and numerical data. The density (◦), velocity
(×) and pressure (+) profile.

Fig. 7. Comparison of analytical Sedov law of ex-
pansion (line) and numerical data (circles).

The simulation of SNR evolution through the
fractal cloud was carried out for two cases of the
clump profile: Gaussian and Lorentzian. The Figs.
8, 9 and 10 show slices of density (ρ), velocity (v),
and pressure (p) fields for these two cases. The fig-
ures show the slices of evolved remnants before the
remappings (see the figure scales).

The first noticeable feature of the SNR evolv-
ing in the MC environment is that the shock front al-
ways tends to go towards the region of lower density.
The shock velocity decreases significantly in contact
with clumps, while the pressure increases. Inside the
remnant we can see many elongated and convoluted
shapes of structure as a result of interaction of the
blast wave with clumps. Many features in the v and
p field, that look like tenuous shock fronts crossing
each other inside the remnant, are the reflected per-
turbations (bow shocks, like in Test II, Section 4.2)
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Fig. 8. Density, velocity and pressure fields for Gaussian (left) and Lorentzian (right) clump profile. The
grayscale palette shows range of values between minimum and maximum cell value throughout the slice. The
time t above the images is the simulation time from the beginning of SNR expansion.
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Fig. 9. Density, velocity and pressure fields for Gaussian (left) and Lorentzian (right) clump profile. The
grayscale palette shows range of values between minimum and maximum cell value throughout the slice. The
time t above the images is the simulation time from the beginning of SNR expansion.
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Fig. 10. Density, velocity and pressure fields for the Gaussian (left) and Lorentzian (right) clump profile.
The grayscale palette shows range of values between the minimum and maximum cell value throughout the
slice. The time t above the images is the simulation time from the beginning of the SNR expansion.
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from the clumps which to a certain extent appear
as shock reflecting walls. The bow shocks, reflected
from the clumps, are clearly seen on the left slices
of Fig. 8. These shock waves are coming back to
the central region and interfere with each other pro-
ducing non-symmetric features inside the remnant.
From Figs. 8, 9 and 10 it is clear that even a rela-
tively small increase in density (∼ 1 order of mag-
nitude at the edge of Lorentzian clumps ensemble)
drastically decrease velocity of shock, so the wide
Lorentzian profiles slow down the shock much fur-
ther from the center of the clumps, while steep and
narrow Guassian profiles allow the SNR shock to find
its way between the clumps. However, at the end
(see Fig. 10), the SNR encircles the cloudlets and
two cases become quite similar to each other. The
emerging large scale shape of the SNR is weakly de-
pendent on the selected clump profile as long as the
clump size is small compared to the SNR. Notice that
in both cases the total mass in clumps is the same.

The number of seed points in the box is NH .
Elmegreen (1997) chose H = 4, according to the den-
sity contrast in ISM, and N = 12, L = 3 because it
results in Df = 2.3, see Eq. (34). However, we set
N = 15 for purely practical reasons. Due to the ran-
dom number based algorithm for making the fractal,
many clouds are not suitable because they are highly
anisotropical relative to the center of the box (e.g.
almost all points are placed in one half of the box).
The solution to this is an isotropy condition that
checks the spatial balance of the points at the first
level of hierarchy (see Section 5.1), requiring these
points to be evenly distributed over the box volume
(to some acceptable extent). With 15 random points
it is much easier to meet the isotropy condition than
with 12. Finally, this does not make much difference
except that in the case of lower N , there are fewer
clumps (NH) that are more massive.

For this first application, the SNR initial con-
ditions were analytic Sedov profiles, but alterna-
tively, we could initialize supernova ejecta similarly
as in Test III (Section 4.3). It is known that the
ejecta play a significant role in shaping the morphol-
ogy of SNR because, even at later stages, it keeps
memory on the early evolution of structures devel-
oped in the ejecta dominated phase. It is showed by
simulations that the clumps of ejecta can overtake
the forward shock and produce protrusions seen in
some remnants (Wang and Chevalier 2001, Orlando
et al. 2012). However, for the protrusions to occur,
the density contrast in the ejecta must be ≥ 5, or
even ∼100 as demonstrated by Wang and Chevalier
(2001) for the case of Tycho SNR. The nickel (56Ni)
bubble scenario taking place in first ∼ 15 days af-
ter the supernova event can be responsible for such
clumping of the ejecta (for the 3D simulations of the
early supernova evolution and development of nickel
bubbles, see Wongwathanarat et al. 2015). Also, the
interaction of the blast wave with the ISM clumps
may have an impact on ejecta structures behind, via
triggered bow shocks, and thus affect the final mor-
phology of an SNR. Considering these notes, it might
be that Sedov profiles used in our simulations are
a somewhat weak approximation. However, our re-

sults show the behavior of the clumpy material in
the downstream region of the analytic Sedov rem-
nant, in terms of hydrodynamic flows. In the future
use of this code for the purpose of comparison with
SNR observations, the initial conditions should in-
clude the ejecta.

An important note must be given regarding
the thermal conduction inside an SNR. Mckee and
Ostriker (1977) found that the evaporation of the
dense clumps embedded in hot SNR interior plays
significant role in shaping their three-phase model
of ISM. The clump evaporation, which results from
thermal conduction, is of great importance in the
early adiabatic phase of the SNR evolution. It causes
the density of hot gas to increase by the mass loss
from clumps, as the thermal conduction effectively
smooths out the temperature and density inhomo-
geneities. Slavin et al. (2017) included thermal con-
duction in their simulations and conclude that (a)
the evaporation does not affect the Sedov expan-
sion law R ∝ t2/5 and (b) the evaporation timescale
increases proportionally to the remnant age. This
means that the clumps far away from the SNR center
will not be efficiently evaporated, as pointed out also
by McKee and Ostriker (1977). The more detailed
picture is given in Orlando et al. (2005) with inclu-
sion of radiative losses apart from thermal conduc-
tion. In the cloud crushing experiment they showed
that, in the test with a 50 Mach shock, the thermal
conduction plays dominant role over the radiative
losses, smoothing the temperature and density gra-
dients which leads to cloud expansion and gradual
evaporation without fragmenting into cloudlets. In-
stead, in the 30 Mach shock case, the radiative losses
are dominant over the thermal conduction, and the
cloud collapses under the effect of radiative cooling,
and eventually fragments into dense and cold fila-
ments. The thermal conduction exceeds the radiative
losses only in the outer parts where the hot diluted
corona develops, expands and evaporates. Our code
does not include neither thermal conduction nor ra-
diative losses. It can be seen by the long-lived clumps
inside the remnant (e.g. on Fig. 9 and 10, Gaussian
clumps) which diffuse to some extent, but certainly
not as fast as they would with the thermal conduc-
tion included. However, the code is intended to be
developed further, so these options are planned to be
integrated at one point.

8. CONCULSIONS

We have presented the 3D hydrodynamical
code for simulating evolution of a supernova remnant
in the ambient of a fractal molecular cloud. The fea-
tures of the code and underlying simulation concepts
are described in detail making a standalone manual
for hydrodynamical simulations of SNRs. With the
described remapping procedure of grid coarsening,
the code can simulate the SNR evolution over a range
of spatial scales of few orders of magnitude, even on
a standard personal computers. The performed tests
of spherical cloud crushing and clumpy ejecta simu-
lation successfully produced the expected hydrody-
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namical phenomena (such as the transmitted and re-
flected shock and Rayleigh-Taylor instabilities). The
comparison of the numerically obtained Sedov pro-
files with the analytical ones also proved the validity
of the code.

The standard contemporary AMR codes
surely have higher performance, because they can
achieve much higher resolution compared to this
code. Besides that, they are optimized to run on
several core processors, computing multiple parts of
the simulation at the same time. However, the sim-
plicity of the code presented in this work makes it
very practical and easy to use while achieving a high
fidelity of hydrodynamical features. The starting res-
olution should be selected carefully so it still satisfies
the requirements after all remapping steps. Also, the
selection of the initial box size should be such that
the final box size sensibly compares to the size of
SNR at the end of the simulation. The Figs. 8, 9
and 10 show that the expansion of SNR in inhomo-
geneous medium leads to asymmetric shapes with
highly turbulent flows in its interior. Future work
will extensively use the code presented in this paper
to simulate large scale interactions of SNRs with the
ISM.
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Pavlović, M. Z., Urošević, D., Arbutina, B., Orlando,
S., Maxted, N., and Filipović, M. D.: 2018,
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Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
E–mail: pkostic@aob.rs

UDK 533.951 : 524.354
Prethodno saopxteǌe

Razvijen je 3D hidrodinamiqki kod,
napisan u programskom jeziku C, radi prouqa-
vaǌa xireǌa ostataka supernovih u okol-
nom medijumu. Zasnovan je na MUSCL-Hancock
xemi sa HLLC Rimanovim rexavaqem. Kod
inicijalizuje ostatak supernove ve� u Se-
dovǉevoj fazi i simulira hidrodinamiku
ǌegovog xireǌa. Simulacija je optimizo-
vana za prouqavaǌe interakcije ostatka sa
me�uzvezdanom sredinom, na velikoj ska-
li. Posle detaǉnog opisa koda i tri testa
hidrodinamike, predstavǉeni su rezultati
simulacije ostatka u uniformnoj sredini
i fraktalno strukturiranom poǉu gustine

MZM, kao prva primena koda. Simulacija
OSN u uniformnoj sredini upore�ena je
sa Sedovǉevim zakonom xireǌa i Sedovǉe-
vim samosliqnim rexeǌima za profile gus-
tine, brzine i pritiska. Rezultati pokazuju
da simulacija dobro reprodukuje hidrodi-
namiku xireǌa ostatka supernove, kao i
da je vrlo praktiqna zbog svoje jednos-
tavnosti i brzine. Evolucija OSN u fraktal-
noj me�uzvezdanoj sredini pokazuje da grudve
ometaju udarni talas i proizvode interfe-
renciju reflektovanih talasa, rezultiraju�i
turbulentnim kretaǌima i nehomogenostima
unutar ostatka.
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