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SUMMARY: The Bianchi-I Kasner type metric with cosmic string and magnetic

field in the framework of the f (R, T ) theory of gravitation is considered. Three

different functional forms of the function f (R, T ) are chosen for investigation. We
found that the strings exist in early stages of evolution of the Universe and they
disappear as time increases. The variation of the equation of state (EoS) parameter

ω = p/ρ < −1 may come from the effect of the string. We find that the string
tension and rest energy density reduce in presence of magnetic field. The Universe
is expanding and accelerating.
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1. INTRODUCTION

Early stages of evolution of the Universe is an
exciting field of research in recent years. Sponta-
neous breaking of symmetry of the Universe causes
topological defects such as cosmic string, domain
walls, monopoles etc. (Kibble et al. 1994). Stress en-
ergy of a cosmic string couples to gravitational field
in a simple way. The general relativistic study of
a cosmic string is initiated by Stachel (1980). It is
believed that strings are responsible for density per-
turbations which leads to formation of galaxies (Zel-
dovich 1980). Banerjee et al. (1990) have obtained
solutions for the Bianchi type I metric in presence
of massive string. Bali and Dave (2001) have stud-
ied cosmic string in context of the general relativity.
Katore and Hatkar (2015) have investigated homoge-

neous hypersurface with cosmic string in Lyra geom-
etry. Naidu et al. (2013) have obtained solutions for
bulk viscous strings in the Brans-Dicke theory using
the five dimensional Kaluza-Klein space time. Ka-
tore (2015) has described string cosmological models
for the Bianchi type II, VIII and IX metric.

Cosmological observations (Riess et al. 1998,
Spergen et al. 2003, Tegmark et al. 2004) indicate
that the Universe is accelerating and expanding. It
is believed that cosmic acceleration is driven by some
kind of energy with negative pressure known as dark
energy. As the nature of dark energy is yet unknown,
modification of the Einstein-Hilbert action of gen-
eral relativity is proposed. These theories are called
modified theories of gravitation. Among them, the
f(R) modified gravity theory is widely studied. The
f(R) modified gravity theory has succesfully derived
the late time acceleration of the Universe (Nojiri and
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Odintsov 2007). From the review of the literature,
it is found that Capozziello et al. (2008), Multa-
maki and Vilja (2007), Katore and Hatkar (2016a),
Shamir (2010), Chibba et al. (2007) are some of
the researchers who have discussed several aspects
of the f(R) gravity. Recently, Harko et al. (2011)
have proposed another alternative theory of gravi-
tation known as the f(R, T ) theory of gravity. In
the f(R, T ) theory, the arbitrary function f(R, T ),
where R is the Ricci scalar and T is the trace of
the stress-energy tensor Tij , is introduced in the La-
grangian. Houndjo (2012) has discussed the transi-
tion from a matter dominated phase to an acceler-
ated phase in the f(R, T ) gravity. Exponential so-
lution of the Universe is obtained by Bamba et al.
(2012). The domain wall effect for the Bianchi type
III and Kantowski-Sachs is studied by Katore and
Hatkar (2016b). The case of perfect fluid for the
Bianchi type III in f(R, T ) is investigated by Reddy
et al. (2012). Moraes (2014) has presented unifi-
cation of the Kaluza-Klein extra-dimensional model
with the f(R, T ) gravity.

On the large scale, the Universe seems homo-
geneous and isotropic. But there is no observational
data that guarantees the isotropy in an era prior to
recombination. The observed local anisotropies in
galaxies, cluster and super cluster led idea to explore
anisotropic models (Cataldo and Campo 2002). The
Kasner solution describes an anisotropic metric. The
Kasner metric is invariant under a three dimensional
Abelian translation group. Taub has derived Kasner
solution which represents an idealized Universe that
is expanding in a higher anisotropic manner. The
Kasner solution plays an important role in study of
anisotropy in quantum particle creation, Baryosyn-
thesis, inflation, massive particle survival, magnetic
field evolution, primordial nucleosynthesis, temper-
ature isotropy and statics of the microwave back-
ground (Paliathansis et al. 2018). The Kasner so-
lution arises very naturally when one formulates the
Einstein field equations for non tilted spatially homo-
geneous cosmologies as a dynamical system (Wain-
wright and Krasinsk 2008). The Kasner solution de-
scribed the evolution of Mixmaster Universe when
the effect of the Ricci scalar of the three dimensional
spatial hypersurface is negligible because of simplic-
ity and the importance of the Kasner solution. It
was studied in higher dimensional and various mod-
ified theories. The existence of solution in higher
order theories is studied by Clifton (2006). Sku-
goreva and Toporensky (2018) have investigated the
Kasner solution in the f(T ) cosmology. In the sec-
ond order gravity, the Kasner solution is an asymp-
totic solution whereas in the fourth order gravity it
is an exact vacuum solution. The theory in which
the Lagrangian is proportional to Rn admitting ex-
act solutions for the Friedmann-Robertsorn-Walker
models. It also generalizes the Schwarschild metric.
These solutions provide a testing ground for new de-
velopments in gravitation theory such as particle pro-
duction, Holography, gravitational thermodynamics
(Clifton and Barrow 2005). Moreover, Clifton and
Barrow (2006) have investigated the initial singu-
larity by finding exact cosmological solutions in the

fourth order gravity theory with help of the Kasner
metric. Gao and Shen (2016) found a new method
for static and spherically symmetric solutions in the
f(R) theory of gravity. Paliathansis (2016) has ob-
tained new integrable f(R) models from the Killing
tensors. Camanhio et al. (2016) have reviewed pure
Lovelock equations for the Kasner metrics.

Inspired by the above studies in the field, in
the present work we intend to obtain solutions to
a magnetized string for three different functional
forms of the function f(R, T ). The paper is orga-
nized as follows: in Section 2, we present metric
and field equations. In Section 3, we obtain solu-
tions of the field equations for the functional form
f(R, T ) = R + 2f(T ). In Section 4 and 5, we solve
field equations for the functional forms f(R, T ) =
f1(R) + f2(T ) and f(R, T ) = µR + µT , respectively.
In Section 6, we summarize our results.

2. METRIC AND FIELD EQUATIONS

Friedmann-Robertsom-Walker (FRW) models
are the best for representation of the present large
scale structure of the Universe. The nature of the
FRW model is homogeneous and isotropic. When
we think of the early Universe, it is believed that it
is not like today i.e. it may not be isotropic. In or-
der to know the early structure of the Universe, we
should consider different models. In this sense the
Bianchi type models are the simplest, homogeneous
and anisotropic and therefore they are important to
study the beginning of the Universe. In the Bianchi
model, the spatial section is flat in which the exten-
sion or contraction rate is direction dependent. Ad-
hav (2012) has solved field equations of the f(R, T )
gravity for the Bianchi type I space time. Saaidi et
al. (2010) have studied the f(R) modifications of
Einstein’s gravity in various Bianchi type I for the
Kasner form metric. Here, we intend to deal with
the LRS Bianchi type I space time of the Kasner
type in the following form:

ds2 = dt2 − t2p1dx2 − t2p2dy2 − t2p3dz2, (1)

where p1, p2 and p3 are three parameters satisfy-
ing p1 + p2 + p3 = s, p2

1 + p2
2 + p2

3 = θ. The pa-
rameters p1, p2, p3 will require to be constants and
if at least two of the three are different, the space
is anisotropic. The energy momentum tensor for a
magnetized string is given by:

Tij = ρµiµj − λxixj

+
1
4π

(
−gαβFiαFjβ +

1
4
gijFαβFαβ

)
,

(2)

where ρ is the total rest energy density of the fluid
and λ is the string tension density. ρp is the parti-
cle energy density. It satisfies the condition uiui =
−xixi = 1. In a co-moving co-ordinate system
u1 = u2 = u3 = 0, u4 = 1. Recently, Yilmaz (2006)
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has investigated the problem of string and domain
wall for quark matter in the theory of general rela-
tivity. This type of case in a scale covariant theory
of gravitation is also studied by Reddy and Naidu
(2007). Katore et al. (2016a) have obtained solu-
tions for the Bianchi type I space-time with string
in presence and absence of magnetic field in context
of the f(R) theory of gravitation. Sharma and Sigh
(2014) have explored the Bianchi type II space-time
for cosmic string and magnetic field in context of the
f(R, T ) theory of gravitation. We will take the oc-
curance of magnetic filed in direction of the y axis.
Therefore, there is only one non-vanishing compo-
nent, namely F31 = I. Maxwell’s field equations are:

Fij;k + Fjk;i + Fik;j = 0, (3)

and:
F ij

;j = 0. (4)

We have the following relation between the energy
density and trace of the energy momentum tensor:

ρ = ρp + λ, (5)

T = λ + ρ. (6)

As discussed above, Harko et al. (2011) have pro-
posed the following action for the f(R, T ) gravity:

S =
1

16π

∫
f(R, T )

√−gd4x+
∫

Lm

√−gd4x.

(7)

From this, we can derive field equations of the
f(R, T ) gravity model discovered by Harko et al.
(2011) and we find:

fR(R, T )Rij − 1
2
(R, T )gij

+(gij¤−∇i∇j)fR(R, T )

= 8πTij − fT (R, T )Tij − fT (R, T )Θij ,

(8)

where:

Tij =
−2∂(

√−g)√−g∂gij
Lm,

Θij = −2Tij − pgij ,

fR(R, T ) =
∂f(R, T )

∂R
,

fT (R, T ) =
∂f(R, T )

∂T
, ¤ = ∇µ∇µ .

Here, one can derive the covariant derivative ∇µ and
matter energy momentum tensor Tij from the La-
grangian Lm. As stated earlier, f(R, T ) is a func-
tion of R and T . Further Lm is referred to the

matter Lagrangian density. In the work of Harko
et al. (2011), we see that the three cases of func-
tion f(R, T ) = R + 2f(T ), f(R, T ) = f1(R) + f2(T )
and f(R, T ) = f1(R) + f2(R)f3(T ) are discussed.
It should mention that formation of the functional
f(R, T ) is governed by the matter field. Therefore,
different choices of the functional are possible which
may lead to different models. We shall now proceed
to obtain solutions of the field equations by taking
the previous forms of the function f(R, T ).

3. MODEL I

We start by assuming the following function
discussed by Harko et al. (2011):

f(R, T ) = R + 2f(T ), (9)
where the function f(T ) depends only on the trace of
the matter field. This simple functional form is stud-
ied by many authors. Katore et al. (2016b) have pre-
sented a homogeneous hypersurface metric with per-
fect fluid in the f(R, T ) theory of gravitation. Sahoo
et al. (2016) have studied the Bianchi type III and
V I0 cosmological models with a string fluid source
in the f(R, T ) gravitation theory by considering the
function given in Eq. (9). Singh and Singh (2014)
have investigated cosmological models by choosing
this particular function given in Eq. (9). Pasqua et
al. (2013) have found that for f(R, T ) = µR + νT
the equation of state parameter approaches -1 and
the deceleration parameter transits from the decel-
erated to accelerated phase at the redshift of z ≈ 0.2.
Using Eqs. (8), (9), the gravitational field equations
reduce to:

Gij = Rij − 1
2
Rgij

= 8πTij + 2f ′(T )Tij

+[2pf ′(T ) + f(T )]gij ,

(10)

where the prime indicates the differentiation with re-
spect to the argument. We also choose the function
of matter as:

f(T ) = µT, (11)
where µ is constant. In the co-moving coordinate
system, from Eqs. (1), (2), (3), (6), (10) and (11),
it is easy to write down the expressions for the field
equations:

[p1 (s− 1)−K0]t−2

= − (8π + 2µ) I2t(2p1+2p3)

8π
+2µp + µρ + µλ,

(12)

[p2 (s− 1)−K0]t−2

=
(8π + 2µ) I2t(2p1+2p3)

8π
+2µp + µρ + (8π + 3µ)µλ,
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[p3 (s− 1)−K0]t−2

= − (8π + 2µ) I2t(2p1+2p3)

8π
+2µp + µρ + µλ,

(13)

[
1
2

(
θ − s2

)
]t−2

= − (8π + 2µ) I2t(2p1+2p3)

8π
+2µp + (8π + 3µ) ρ + µλ,

(14)

where K0 = 1
2

(
s2 − 2s + θ

)
. From Eqs. (12) and

(14), we get p1 = p3. For this value, the above sys-
tem of Eqs. (12)-(14) reduces to the following equa-
tions:

[p1 (s− 1)−K0]t−2

= − (8π + 2µ) I2t(4p1)

8π
+2µp + µρ + µλ,

(15)

[p2 (s− 1)−K0]t−2

=
(8π + 2µ) I2t(4p1)

8π
+2µp + µρ + (8π + 3µ)µλ,

(16)

[−1
2

(
θ − s2

)
]t−2

= − (8π + 2µ) I2t(4p1)

8π
+2µp + (8π + 3µ) ρ + µλ.

(17)

From Eqs. (16)-(17), we obtain the following ex-
pressions for the string tension density, rest energy
density, pressure and particle energy density:

λ =
(p2 − p1) (s− 1) t−2

(8π + 2µ)

−I2t(4p1)

4π
,

(18)

ρ =
[p1 (1− s) + θ − s]t−2

(8π + 2µ)

−I2t(4p1)

4π
,

(19)

p = [
d1

t2
]

+[
(4π − µ) I2t(4p1)

8πµ
],

(20)

ρp = [
(θ − s)− p2 (s− 1)

8π + 2µ
]t−2, (21)

where:

d1 = [d11−d12−d13+d14
2µ(8π+2µ) ]d11 = (s− 1) (8π + µ) p1 ,

d12 = (s− 1)µp2 ,
d13 = (4π + µ) s2 ,
d14 = (8π + µ) s− (4π + µ) θ .

From Eq. (21), we found that the energy density of
particle is independent of magnetic field. The plots
of λ, ρ, ρp, w are shown in Figs. (1), (2), (3) and
(4). We must emphasize here that one may get dif-
ferent conclusions by choosing different values of con-
stants. The graphs are plotted against redshift. It
also gives size of the Universe at a particular time,
here a higher z implies smaller Universe size in the
past. The value of z is greater than 1 in the early
era of the Universe and tends to be zero at the lat-
ter time (z ≤ 0). The magnetic field is subtracted
in expressions of the string tension density and rest
energy density. The energy condition ρ ≥ 0 is sat-
isfied for p1 < 0. We see that as I > 0.5 the sign
of the rest energy density and string tension density
is negative in the early era of the Universe and they
approach zero at the later time. In this case, ρ < 0,
and it is not of our interest. For 0 < I < 0.5 they are
positive and larger at initial stages and tend to zero
at large time. Thus, the Universe is dominated by
the particle energy density throughout the evolution
of the Universe. Letelier (1983) has pointed out that
the string tension density may be positive or nega-
tive. The negative value of the string tension density
represents the disappearance of the string phase of
the Universe. In other words, the Universe contains
an anistropic fluid of particles.
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Fig. 1. Variation of string tension density as a
function of red shift.
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Fig. 3. Variation of rest energy density as a func-
tion of redshift.
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Fig. 4. Variation of the EOS parameter as a func-
tion of redshift.

Kibble (1976) stated that when the number of
strings happens to be large, they govern the earlier
history of the Universe. Strings can interact with
matter leading to significantly local inhomogeneties.
Pradhan et al. (2012) have observed the oscillation
of λ initially and stability of λ with increasing time
in case of the Bianchi type I metric in the general rel-
ativity. In the f(R, T ) theory, Sahoo et al. (2016a)
have found that λ = 0 for the Bianchi type III space-
time and string exists in case of the Bianchi type VI0.
In our model, the string network exists in the early
Universe and eventually disappears which is in agre-
ment with Kibble (1976).

We have noted that the string tension density
and rest energy density vary for small and large value
of I at the early stages of evolution of the Universe
and at the later time, the effect of magnetic field
disappears. The EoS parameter is given by relation
between pressure and energy. The EoS parameter
is considered as a function of time to explore the
anisotropic dark energy models. It is given by the
relation ω = p/ρ. The possibility of the EoS param-
eter ω < −1 is allowed. Frampton (2003) and Gil
et al. (2002) have interpreted that the dark energy
with ω < −1 comes from the string theory, as closed
strings on a toroidal cosmology. In our model, the
EoS parameter is ω < −1, thus we conclude that
this variation of the EoS parameter comes from the
string.

4. MODEL II

In this case, we explore the second model pro-
posed by Harko et al. (2011):

f (R, T ) = f1 (R) + f2 (T ) , (22)

where f1(R) is a function of R and f2(T ) a function
of T . The addition of the stress energy momentum
tensor dependent function increases the possibility of
modification of evolution of the Universe. The field
equations using Eq. (22) take the following form:

f ′ (R)Rµν − 1
2
f1 (R) gµν

+(gµν¤−∇µ∇ν) f ′1 (R)

= 8πTµν − f ′2Tµν − f ′2 (T ) θµν

+
1
2
f2 (T ) gµν .

(23)

We assume the following functional form which is
widely discussed in the f(R) theory of gravitation.
In the f(R) gravity it has been shown that addition
of an R2 term to the Einstein gravitational action
leads to a consist modified theory which may pass
solar system test and is free from instability prob-
lem. It admits early inflation. Starobinsky (2007)
proposed the model f(R) = R + αR2 which leads to
acceleration and expansion of the Universe. Jamil
et al. (2012) have investigated various cosmological
models for a particular function f(R, T ) = R2+f(T ).
Here, we intend to consider the model given by:

f1 (R) = R + bRm, b > 0,m > 0. (24)

We would like to stress that the choice of the func-
tion in the Eq. (24) may make the model consistent
with the present state of the Universe. Further, we
have chosen the following function:

f2 (T ) = µT (25)

using the per-requisite Eqs. (1), (2), (22) and (25),
so that the system reduces to the following field equa-
tions:

[2p1 (s− 1)− (
s2 − 2s + θ

)
]t−2

−K1t
−2m + K2[p1 + (2m + 2) p1 + K3]

t(−2m−4) = [−K4t
2p1+2p3 ]

+2µP + µλ + µρ,

(26)

[2p2 (s− 1)− (
s2 − 2s + θ

)
]t−2

−K1t
−2m + K2[p2 + (2m + 2) p2

+K3]t(−2m−4)

= [K4t
2p1+2p3 ] + 2µP + (16π − 5µ)

λ + µρ,

(27)
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[2p3 (s− 1)− (
s2 − 2s + θ

)
]t−2

−K1t
−2m + K2[p3 + (2m + 2) p3 + K3]

t(−2m−4) = [−K4t
2p1+2p3 ] + 2µP

+µλ + µρ,

(28)

[θ − s2]t−2 −K1t
−2m

+K2[θ − s− 2m− 2]t−2m−4

= [K4t
2p1+2p3 ] + 2µP

+2µλ + (16π + 3µ) ρ,

(29)

where:

K1 = b
(
s2 − 2s + θ

)m
,

K2 = 2bm
(
s2 − 2s + θ

)m−1
,

K3 = −2m− 2 + (2m + 3) (2m + 2) ,

K4 =
(16π + 2µ) I2

8π
.

From Eqs. (26) and (28), we get p1 = p3. Using
this relation, the above system of equations reduces
to the following equations:

[2p1 (s− 1)− (
s2 − 2s + θ

)
]

t−2 −K1t
−2m + K2[p1 + (2m + 2) p1

+K3]t−2m−4 = [−K4t
4p1 ] + 2µP

+µλ + µρ,

(30)

[2p2 (s− 1)− (
s2 − 2s + θ

)
]

t−2 −K1t
−2m + K2[p2 + (2m + 2) p2

+K3]t(−2m−4) = [K4t
4p1 ] + 2µP

+(16π − 5µ) λ + µρ,

(31)

[θ − s2]t−2 −K1t
−2m

+K2[θ − s− 2m− 2]t−2m−4

= [K4t
4p1 ] + 2µP + 2µλ

+(16π + 3µ) ρ.

(32)

Using Eqs. (30)-(32), we obtain the following ex-
pressions for the rest energy density, string tension
density and particle energy density:

ρ = K5t
−2 −K6t

−2m−4 − I2t4p1

4π
, (33)

λ = K7t
−2 −K8t

−2m−4 − [
(8π + µ)I2t4p1

4π (3µ− 8π)
], (34)

ρp = C1t
−2 + C2t

−2m−4 + C3t
4p1 , (35)

where:

K5 = [
[−p1 (s− 1)− s + θ]t−2

8π + µ
],

K6 = [
bm

(
s2 − 2s + θ

)m−1

8π + µ
]

[p1 + (2m + 2) p1

+(2m + 2) (2m + 3) + s− θ],

K7 =
[(−p1 − p2) (s− 1)]t−2

3µ− 8π
,

K8 = [
bm

(
s2 − 2s + θ

)m−1

3µ− 8π
]

[p1 − p2 + (2m + 2) (p1 − p2)],

C1 =
C11 + C12 + C13

(8π + µ) (3µ− 8π)
,

C11 = (16π − 2µ) p1 (s− 1)

C12 = p2 (8π + µ)

C13 = (θ − s) (3µ− 8π)

C2 = [
K2

(16π + 2µ) (3µ− 8π)
]

[p1 (16π − 2µ) (2m + 3)

−p2 (8π + µ) (2m + 3)

+ (θ − s) (3µ− 8π)

− (2m− 2) (2m + 3) (3µ + 8π)],

C3 =
(16π − 2µ) I2

4π (3µ− 8π)
,

From expressions (33)-(35), we see that ρ, λ
and ρp are decreasing functions of time. The en-
ergy condition is satisfied for p1 < 0. By considering
particular values of the constants, plots of ρ, λ, ρp

against redshift are shown in Figs. (5), (6), (7) and
(8). We observe that when m = 2 and I = 2, at the
initial stages λ ≤ 0, ρ ≥ 0, ρp ≥ 0 i.e. the fact that
the Universe is dominated by an anisotropic fluid
particles. Also the string phase of the Universe dis-
appears. Moreover, for z −→ −1, the string, energy
and particle densities tend to zero: λ, ρ, ρp −→ 0.
When m = 0.5 and I = 2 at the early stages of evolu-
tion of the Universe, the string and particle density
become positive whereas ρ ≤ 0 and, as z −→ −0,
λ, ρ, ρp −→ 0. Thus, a string network exists in the
early history of the Universe and it disappears in the

6
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future time but, as ρ < 0, this case is not of our
interest.

For m = 0.5 and I = 0.01, one has λ ≥ 0, ρ ≥
0 at initial stages of the Universe, therefore the string
exists in the early stages of the Universe and, at
later time, it eventually vanishes. It is interesting
to note that λ ≤ 0 when m = 2, and λ ≥ 0 for
m = 0.5. When I = 2, ρ ≤ 0 whereas for I = 0.01,
ρ ≥ 0. λ changes with the changing value of m
whereas ρ changes with I. The existence of string
may depend on Rm in Eq. (25) whereas the mag-
netic field may have effect on the rest energy density.
The value of the EoS parameter is much larger than
1 which may be the effect of curvature. Our model
is consistent with the argument of Kibble (1976) for
m = 0.5, I = 0.01.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

10

12
x 10

5

z, m=2

E
ne

rg
y 

de
ns

iti
es

 

 
λ
ρ
ρ

p

Fig. 5. Variation of energy densities for m=2 as a
function of redshift.
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Fig. 6. Variation of energy densities for m=0.5 as
a function of redshift.
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Fig. 7. Variation of rest energy density for m=0.5
as a function of redshift.
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Fig. 8. Variation of the rest energy density for
m=2 as a function of redshift.

5. MODEL III

Herein, we deal with the study of the function
given by:

f (R, T ) = µR + µT. (36)

This type of functional conjecture gives us the ef-
fect of the cosmological constant Λ which depends
on the stress energy tensor. We call this the effec-
tive cosmological constant. These types of model for
the Kaluza-Klein space time is discussed by Sahoo et
al. (2016). Poplawski (2006) have presented the cos-
mological constant as a function of the trace energy
momentum tensor. Using Eq. (36), the field equa-
tions of the modified f (R, T ) gravity are obtained
as:

Rij − 1
2
Rgij =

(
8π + µ

µ

)
Tij

+
(

P +
1
2
T

)
gij .

(37)

The well known field equations of general relativity
with the cosmological constant are given by:

Rij − 1
2
Rgij = −8πTij + Λgij . (38)

Comparing Eqs. (37) and (38), we get Λ =
Λ (T ) = P + 1

2T and −8π = 8π+µ
µ . Thus, we have:

Rij − 1
2
Rgij =

(
8π + µ

µ

)
Tij + Λgij . (39)

Using Eqs. (1) and (2), we have the following field
equations:

[p1 (s− 1)−K0]t−2

=
(

8π + µ

µ

)(−I2t(2p1+2p3)

8π

)
+ Λ,

(40)
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[p2 (s− 1)−K0]t−2

=
(

8π + µ

µ

)

(
λ +

I2t(2p1+2p3)

8π

)
+ Λ,

(41)

[p3 (s− 1)−K0]t−2 =
(

8π + µ

µ

)

(−I2t(2p1+2p3)

8π

)
+ Λ,

(42)

[
1
2
(θ − s2)]t−2 = (

8π + µ

µ
)

(
I2t2p1+2p3

8π
+ ρ) + Λ.

(43)

From Eqs. (40) and (42), we obtain p1 = p3.
Using this relation, the system of the above equations
reduces to the following form:

[p1 (s− 1)−K0]t−2 =
(

8π + µ

µ

)

(−I2t(4p1)

8π

)
+ Λ,

(44)

[p2 (s− 1)−K0]t−2 =
(

8π + µ

µ

)

(
λ +

I2t(4p1)

8π

)
+ Λ,

(45)

[
1
2

(
θ − s2

)
]t−2 =

(
8π + µ

µ

)

(
I2t4p1

8π
+ ρ

)
+ Λ.

(46)

Using Eqs. (44)-(46), we obtain the rest den-
sity, string tension density, pressure and particle en-
ergy density as follows:

ρ = − µ

8π + µ
[p1 (s− 1)− θ + s]t−2 − I2t4p1

4π
, (47)

λ =
µ (p2 − p1) (s− 1)

8π + µ
t−2 − I2t4p1

4π
, (48)

P =
K9

t2
+

(8π + 3µ) I2t4p1

8πµ
, (49)

ρp = −µ[
p2 (s− 1) + s− θ

8π + µ
]t−2, (50)

where:

K9 = k91−k92+k93
(16π+2µ) .k91 = (8π + µ)

(
θ − s2

)

k92 = µ (p2 − p1) (s− 1)
k93 = (16π + 3µ) (p1 (s− 1)− θ + s) .

In this model, the energy density of particle
is independent of magnetism. The energy condi-
tion ρ ≥ 0 is satisfied for p1 < 0. The rest energy
density and string tension density are positive for
0 ≤ I ≤ 0.01 and z ≥ 0.2, and approach zero as
z −→ −1. It is also observed that the string ten-
sion density and rest energy density are negative for
z ≥ 0, I ≥ 0.5 and they approach zero as z −→ −1.
The particle energy density is positive when z ≥ −0.2
(see Figs. (9) and (10)). It is not independent of the
term I. Thus, the particle energy density pervades
the Universe. A close study of the expressions (48)
and (49) reveals that the rest energy density and
string tension density change with changing mag-
netic field. For large value of I, the string phase
of the Universe disappears. The EoS parameter is
less than -1 for small values of I. This may be the
effect of string. The evolution of the cosmological
constant is as shown in Fig. (11). The value of the
cosmological constant is assumed to be positive. The
observed value of Λ is approximately 10−10(eV )4. It
is essential to point out that the value of Λ was large
during the early stages of the Universe. The expan-
sion of the Universe was strongly influenced by the
cosmological constant. It has been suggested that Λ
depends on the Higgs scalar field. A positive cos-
mological constant means repulsive forces between
galaxies whereas a negative cosmological constant
connotes attractive forces between galaxies. A posi-
tive value of the cosmological constant balances the
gravitational force and accelerates the expansion of
the Universe. A negative value of the cosmological
constant represents the ordinary matter which de-
celerates the Universe. In our derived model, Λ is
negative and much smaller than −1 at initial stages
of the Universe and the effect of Λ at later time tends
to zero. Thus, we find that the Universe is deceler-
ating at the initial stages of the Universe where the
string exists.
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Fig. 9. Variation of energy densities as a function
of redshift.
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Fig. 10. Variation of rest energy density as a func-
tion of redshift.
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We have the following physical parameters for
the above three models: volume

V = t2p1+p2 , (51)

expansion scalar

θ1 = 3H =
2p1 + p2

t
, (52)

deceleration parameter

q =
d

dt

(
1
H

)
− 1 =

3− 2p1 − p2

2p1 + p2
. (53)

Keeping in mind the restriction of the constant
p1 < 0, we see that the specific volume is increas-
ing function of time t for p2 > −2p1. It is zero at
t = 0. The expansion scalar θ1 is decreasing function
of time t. It is large near Big bang singularity. The
rate of expansion of the Universe decreases with in-
creasing time.The deceleration parameter is constant
throughout the evolution of the Universe. The sign
of the deceleration parameter indicates whether the
Universe is accelerating or decelerating. The Uni-
verse is decelerating at the past and accelerating at
the present. Here, the deceleration parameter is neg-
ative for P2 > −2p1 + 3. Thus, the Universe is ac-
celerating and expanding for p2 > −2p1 + 3 which is
consistent with the cosmological observations.

6. CONCLUSION

In the presented research study, we have ex-
plored the Kasner space-time in the presence of the
string and magnetic field in context of the modified
f(R, T ) theory of gravitation. We have found that:

1. In model I, the Universe is dominated
by the particle energy density. For large values of
constantI the rest energy density and string tension
density are negative near z = 1 and approach zero as
z tends to −1.

2. In model II, the energy densities are af-
fected by the curvature term as well as magnetic
field.

3. In model III, the particle energy density
is independent of the term I. The rest energy den-
sity and string tension density are positive for small
values of I near z = 1.

4. The Universe is expanding and accelerat-
ing. It is consistent with the observational data.

5. The EoS parameter is less than −1 which
may be an effect of the string in Models I and III. In
Model III, the EoS parameter is positive and larger
than 1 which may be an effect of the curvature term
in the function.

6. The cosmological constant term is negative
throughout the evolution of the Universe.

7. Geometry of the space-time remains same
for the different functional forms of f(R, T ), but the
matter distribution is slightly changed.

8. The component of magnetic field reduces
the rest energy density and string tension density.
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Razmatrana je metrika tipa Bjanqi-I
Kazner sa kosmiqkim strunama i magnetnim
poǉem u okviru f(R, T ) teorije gravitaci-
je. Za istra�ivaǌe su izabrana tri razliqita
funkcionalna oblika funkcije f(R, T ). Pro-
naxli smo da strune postoje u ranim fazama

evolucije Univerzuma, i nestaju sa prolaskom
vremena. Mogu�e je da se varijacija para-
metra iz jednaqine staǌa ω = p/ρ < −1
javǉa usled delovaǌa struna. Naxli smo da
se tenzija struna i gustina energije mirovaǌa
smaǌuju pri postojaǌu magnetnog poǉa. Uni-
verzum se xiri i xireǌe se ubrzava.
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