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SUMMARY: Due to the importance of collisions and impacts in early phases
of the evolution of the planetary system, it is interesting to estimate the heating

of a solid target due to an impact on it.

A physically simple calculation of the

temperature to which a solid target heats up after the impact of a projectile with
mass ™M and speed U is performed, and possibilities for the application of this result

in planetology are pointed out.
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1. INTRODUCTION

Colliding macroscopic bodies exchange mo-
mentum. In inellastic collisions, a part of the mo-
mentum is transformed into heat.

The aim of this paper is to analyze to some ex-
tent the thermal effects in a collision of solid bodies
of different masses, and to estimate the temperature
to which the more massive of the colliding bodies
(the target) heats up. If the temperature of the tar-
get rises sufficiently, melting and ultimately vapori-
sation will occur. The melting temperature of a solid
can be estimated by the so called Lindemann crite-
rion. The value obtained by the Lindemann criterion
will be compared with the temperature to which the
target heats up in a collision. As the temperature
to which the target heats up depends on the kinetic
energy of the impactor this calculation will provide
an estimate on whether or not the target melts in an
impact, and, as a consequence, can it be analyzed by
applying the solid state physics or not.

If the mass of the target is sufficiently bigger
than the mass of the impactor, the impact will pro-
duce virtually no change in the momentum of the
target, while the impactor will almost certainly be

destroyed. The kinetic energy of the impactor will
be spent on heating of the target and on introducing
changes into its structure.

The following section contains the calculation
of the temperature to which a target in a collision
heats up in the case of an inellastic collision. The cal-
culation is performed for two cases: for the ”ideal”
case, in which all of the kinetic energy of the im-
pactor is converted into heat, and for a more realis-
tic case, in which a part of the kinetic energy is used
to form a crack in the target. The third part shows
how to include the equation of state of the material
of the target into the calculation in one particular
example, and the last part of the paper points to
possible planetological application of the calculation
presented in the paper.

2. CALCULATIONS

2.1. The ideal case

The specific heat of a solid at low temperature
is given by (Davydov 1980):
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where kg is Boltzmann’s constant, % is Planck’s con-
stant divided by 27, T" the absolute temperature and
V' the speed of sound waves in the material. It is

known that:
vV 6713)1/2
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where P and p denote the pressure and density of
the material, respectively. Inserting Eq. (2) into Eq.
(1), it follows that:

2772 kB 8P _3/2 3
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Heating up the volume V of material of the target
by one degree requires the amount of energy equal
to VCy. The temperature to which this volume will
heat up when impacted by an object having mass m
and speed v, is in the ideal case, given by:

1, mv?
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where Ty denotes the initial temperature of the tar-
get. Practically, the volume V represents physically
the volume of a crater resulting from the impact. The
volume is obviously dependent on the shape of the
crater. Assume a crater has shape of a half of a rota-
tional ellipsoid with distinct semi axes, denoted by a,
b and c. Physically, a and b are the semi axes of the
”opening” of the crater, and ¢ denotes its depth. The
volume is V' = (2/3)mabe, which leads to the final ex-
pression for the temperature to which this volume of
the target heats up as a result of the impact:
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Inserting Eq. (2) into Eq. (5), it finally follows that:
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Is this heating sufficient or not to cause melt-
ing and even vaporisation of the material of the tar-
get? This can be determined by applying the so
called Lindemann criterion which states that (Cele-
bonovic 1993):

T, = Tm()(%)% exp(270(1 = (po/p))).  (7)

In this expression T}, denotes the melting tempera-
ture of a material at mass density p, T}, is the melt-
ing temperature at density pg.The symbol ¢ denotes
the value of the Gruneisen parameter of the material
at density pg.The Gruneisen parameter is defined as

OAKT
= , 8
7= o (8)
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where « is the thermal expansion coefficient and Kr
the isothermal bulk modulus of the material. Com-
paring Egs. (6) and (7) it follows that T} < T,, if:

Ex 0P 59,3 _g_ A4n® Po\2/3
() PR3 (kpTy) 2 < Tro(22)?/
abc(ap) (ke To) ~ 151° o)
Ty
exp(270(1 = (po/p))) x [1 = 7=
m0

x(”—;rm exp(=270(1 = (po/p))],  (9)

where F) denotes the kinetic energy of the impactor
at the moment of impact.

In practical terms, the fulfillement of this con-
dition means that the target heats up at the point of
impact, but does not melt. A further implication is
that such an impact can be analyzed by solid state
physics. The analytical expression of the derivative
%—I; depends on the form of the equation of state of

the target material.

2.2. The ”real” case

If the relative velocity of two colliding solid
bodies is high enough, and if the material strength
of the target is small enough, it can be expected that
a fracture will occur in the target as a consequence of
the collision. A standard result for the stress needed
for a fracture to occur is given by (for example, Tilley
2004):

— 1(@)1/2
2" roa

(10)
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where E is Young’s modulus of the material, x is
the surface energy, 7 the radius of curvature of the
crack, rg the interatomic spacing at which the stress
becomes zero and a denotes the length of the crack.
A simple analysis shows that o¢ has the dimensions
of pressure, which means that the stress multiplied
by a volume has the dimensions of energy.

This means that when a fracture forms in a
target as a result of the impact, the energy ballance
has the following form:

1
§mv2 —ocV =CyV(Ty — Tp).

(11)
It follows that, in this case, the target heats up to a
temperature given by:

1 Ey

T =T0+ Cv X ( % Uc). (12)
Inserting Eqgs. (2), (3) and the expression for the
volume into Eq. (12), simple algebra could give the
result for the temperature 77 to which the target
heats up.

A physically more interesting approach to the
same problem is given by dynamic quantized fracture
mechanics (DQF M) (for example Pugno 2006). The
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basic difference between DQF M and the usual ap-
proach used in material science is that DQF M intro-
duces geometry in studies of scaling laws in material
science (for example Carpinteri and Pugno 2005).
Considering that the occurence of a fracture in a
material is a sign of its failure, it can be shown in
DQFM that the stress needed for the occurence of
a failure is given by (Pugno 2006):

1+ (82)
m(lo + (g/2))

where K. denotes the fracture toughness, pg is the
radius of the crack of length Iy and ¢ is the length
of the so called fracture quantum. In this case, the
energy balance is determined by Eq. (11), with o
instead of o¢, and the temperature to which the tar-
get heats up is given by Eq. (12) with the same
replacement.
The final result is:
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In this way we have obtained an expression for the
temperature to which a target heats up after the im-
pact in the case a fracture forms. Whether or not
it melts as a result of the impact can again be de-
termined by comparing 77 with the result of Linde-
mann’s criterion, expressed by Eq. (7). It turns out
that the condition for "non-melting” is given by:

Ic[
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3. THE INFLUENCE OF THE
EQUATION OF STATE

Several equations in the preceeding section
contain the derivative 2 —, which implies that their

application demands the knowledge of the equation
of state (EOS) of the material of the target. Gen-
erally speaking, the FOS is an equation of the form
P = f(p,T) where all the symbols have their stan-
dard meanings, and f is some function. The choice
of the FOS appropriate for a given material is a
complex task.

As an example, the so called Birch-Murnaghan
EOS will be used. This equation has the form
(Stacey 2005):

P(v) = 250 [y - 2

fiedm-o|qe -} oo

where By = — ( EYr is the bulk modulus of the

material and B}, = 6—P)T is its pressure derivative.
The symbols Vy and V' denote the volume of a spec-
imen under consideration at the initial value of the
pressure Py and at some arbitrary value P. It can
be shown that:
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The last expression can be simplified by assuming
Bj = 0. It follows that in this case the tempera-
ture to which the target gets heated as a result of an
impact with a fracture forming in it is given by:
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A similar result could be obtained for any other form
of the FOS.

4. DISCUSSION AND CONCLUSIONS

The calculations discussed in this paper are
mathematically simple, but physically they are of
considerable interest in planetary science. The main
results expressing the temperature to which a mas-
sive target heats up as a result of impact of a projec-
tile of smaller mass are given by Eqs. (6) and (16).
The calculations have been performed for two dis-
tinct cases: when the impact has no consequences on
the structure of the target, and when it is so strong
that a fracture occurs in the body of the target.

There is a distinct difference in the behaviour
of the results obtained in the two cases. In what we
have called ”the ideal case”, the temperature of the
target always changes as a result of the impact, as
OP/0p is always different from zero. No heating ef-
fect would occur only in a special case dP/dp = 0
which is physically unrealistic because a material in
which pressure and density are not related in some
way does not exist.

An interesting result has been obtained in the
"real case”. Namely, using standard material sci-
ence would have given a result which would have
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taken into account only the parameters of the ma-
terial of the target. Instead of such an approach, we
have used the DQF M approach, which takes into
consideration the material parameters, but also the
geometry of the problem. Note that the result con-
tains the length and radius of the crack, as well as
the length of the fracture quantum.

A possible extension of the calculations dis-
cussed here could be the inclusion of magnetic fields.
Recent experiments in material science have shown
that the presence of low magnetic fields can lead to
strenghtening of materials (Erb et al. 2012). This
means that their failure strength is increased.

In this case the heating effect does not always
occur. It is clear that for the particular value of the
kinetic energy of the impactor, given by:

Fy = O’fV (20)
Ty = Tp in Eq. (12), which means that in that case
the target does not heat up as a consequence of the
impact. Such a result may seem strange, but it is a
consequence of the partition of the kinetic energy of
the impactor on the heating of the target and forma-
tion of a fracture in it.

Results of this paper have obvious applications
in planetary science. It is known that impacts and
collisions between various bodies have been occur-
ing throughout the history of our planetary system.
One of the consequences of these events are the im-
pact craters on the Earth, Moon, Mars, (at least)
some asteroids (for example on Eros, see Veverka et
al. (2001)) and satellites. It is expectable that the
spots on the surfaces of these objects in which im-

pacts occur get heated. The question which arises is
whether or not such events can be analyzed by us-
ing solid state physics. Namely, if the material of
the target(s) heats up but does not melt or vapor-
ize, an impact can be analyzed by using laws of solid
state physics. However, if melting occurs, solid state
physics is applicable only up to the temperature of
melting. Details will be discussed elsewhere.
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Opuzunasty HayuHL pao

[TosuaTo je ma cy ymapu m cymapu Ouiau
BEOMAa BAKHU y PAHUM IEPUOAUMA Pa3Boja IJjia-
HETHOI cucreMa. Ycijlen Tora, NOPUPONHO Ce
IOCTaBJ/ha OUTAE 3arpPeBama UBPCTE METEe IPU
yaoapy mpojeKkTuia y my. ¥ panay je MUCKYyTOBAHO
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(U3UYKN jeNHOCTABHO WM3pavyHABame€ TeMIepa-
Type IO KOje ce 3arpeje UyBpcTa MeTa IpU yIaapy
y BY OPOjeKTWJa Mace m U Op3uHEe v. Y Ka3aHO
je ma moryhe mpumene nobujeHMX pesynrara y
MJIAHETOJIOT L) U.



