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SUMMARY: The voids between galaxies are identified with the volumes of the
Poisson Voronoi tessellation. Two new survival functions for the apparent radii of
voids are derived. The sectional normalized area of the Poisson Voronoi tessella-
tion is modelled by the Kiang function and by the exponential function. Two new
survival functions with equivalent sectional radius are therefore derived; they rep-
resent an alternative to the survival function of voids between galaxies as given by
the self-similar distribution. The spatial appearance of slices of the 2dF Galaxy
Redshift Survey is simulated.
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1. INTRODUCTION

The statistical analysis of the voids between
galaxies is the topic of our research and the following
catalogs have been explored: the two-degree Field
Galaxy Redshift Survey (2dFGRS), see Patiri et al.
(2006) and von Benda-Beckmann and Müller (2008),
the Sloan Digital Sky Survey (SDSS), see Tikhonov
(2007), and the combination of 2dFGRS and SDSS,
see Tinker et al. (2008). The voids between galaxies
are usually modelled by a survival function in the
apparent radius as given by a modified exponential
distribution, see Eq. (3) in von Benda-Beckmann
and Müller (2008) or our Section 4; this fact is con-
sidered here a standard argument for comparison.
The concept of Voronoi Diagrams dates back to the
vortex theory applied to the solar system as devel-
oped in the 17th century; see Descartes (1644) and
Fig. 1 in Aurenhammer and Klein (2000). The name
is due to the two historical records by Voronoi (1907,
1908) and the applications to astrophysics beginning

with Kiang (1966). The Voronoi diagrams represent
a model of the voids between galaxies; see van de
Weygaert and Icke (1989), Pierre (1990), Barrow and
Coles (1990), Coles (1991), van de Weygaert (1991a),
van de Weygaert (1991b), Zaninetti (1991), Ikeuchi
and Turner (1991), Subba Rao and Szalay (1992),
van de Weygaert (1994), Goldwirth et al. (1995),
van de Weygaert (2002), van de Weygaert (2003),
and Zaninetti (2006).

The Poisson Voronoi tessellation (PVT) is a
particular case of the Voronoi tessellation in which
the seeds are generated independently on the X, Y
and Z axes in 3D through a subroutine which returns
a random real number taken from a uniform distri-
bution between 0 and 1. For practical purposes, the
subroutine RAN2 was used; see Press et al. (1992).

On adopting an astrophysical point of view,
the sectional PVT, Vp(2, 3), is very interesting be-
cause it allows a comparison with the voids as ob-
served in slices of galaxies belonging to different cat-
alogs such as the CFA2 catalog (Geller and Huchra
1989), the 2dfGRS (Norberg et al. 2002), the 6dF
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Galaxy Survey (6dFGS) (Jones et al. 2004) or the
SDSS (Einasto et al. 2003). The absence of: (i) a
numerical analysis through the survival function of
normalized areas in 2D and normalized volumes in
3D of PVT and (ii) a careful exploration of the sta-
tistical properties of Vp(2, 3), leads to the following
questions:

(i) Is it possible to integrate the usual probabil-
ity density functions (PDFs) which character-
ize the main parameters of 2D and 3D PVT
in order to obtain an analytical expression for
the survival function?

(ii) Is it possible to model the normalized areas of
Vp(2, 3) with the known PDFs?

(iii) Can we transform the normalized volumes and
areas into equivalent radius distributions?

(iv) Can we simulate the observed slices of galax-
ies as given, for example, by the 2dF Galaxy
Redshift Survey?
In order to answer these questions, Section 2

reports the three major PDFs used to model the nor-
malized area/volume of 2D/3D PVT as well as the
results of the fit.

Section 3 reports the apparent distribution in
effective radius of the 3D PVT as well as their asso-
ciated survival functions.

Section 4 contains the self-similar survival
function for voids between galaxies as well as the
associated PDF.

Section 5 reports the fit of the normalized area
distribution of the sectional PVT with the Kiang
function and the exponential distribution.

Section 6 reports our actual knowledge of
the photometric properties of galaxies as well as a
Voronoi simulation.

It is important to point out that the PVT is
not used as a technique to identify voids in existing
data catalogs; see Ebeling and Wiedenmann (1993),
Bernardeau and van de Weygaert (1996), Schaap and
van de Weygaert (2000), Marinoni et al. (2002),
Melnyk et al. (2006), van de Weygaert and Schaap
(2009) and Elyiv et al. (2009).

The PVT formalism is here used conversely:
to generate mock catalogs which are later calibrated
by observations. On adopting the point of view of
the statistical distributions, it is important to un-
derline that the survival function is here identified
with the cumulative void size distribution function.
We briefly recall that the cumulative void size distri-
bution function relates the number of voids to their
size, analogously to the halo mass function which re-
lates the number of dark matter halos to their mass.

2. THE ADOPTED
DISTRIBUTIONS OF THE PVT

A PDF is the first derivative of a distribution
function (DF) F (x) with respect to x. In the case
where the PDF is known but the DF is unknown, the
following integral:

F (x) =
∫ x

0

f(x)dx (1)

is evaluated. As a consequence, the survival function

(SF) is:
SF = 1− F (x) . (2)

2.1. The Kiang function

The gamma variate H(x; c), as given by Kiang
(1966), is:

H(x; c) =
c

Γ(c)
(cx)c−1 exp(−cx) , (3)

where 0 ≤ x < ∞, c > 0, and Γ(c) is the gamma
function with argument c. The Kiang PDF has the
mean:

µ = 1 , (4)

and variance:
σ2 =

1
c

. (5)

In the case of a 1D PVT, c = 2 is an exact analytical
result and conversely c is supposed to be 4 or 6 for
2D or 3D PVTs, respectively, Kiang (1966). The DF
of the Kiang function, DFK , is:

DFK = 1− Γ (c, cx)
Γ (c)

, (6)

where the incomplete Gamma function, Γ(a, z), is
defined by:

Γ(a, z) =
∫ ∞

z

e−tta−1dt . (7)

The survival function SK is:

SK =
Γ (c, cx)

Γ (c)
. (8)

2.2. Generalized gamma

The generalized gamma PDF with three pa-
rameters a, b, c, see Hinde and Miles (1980), Ferenc
and Néda (2007), and Tanemura (2003), is:

f(x; b, c, d) = c
ba/c

Γ(a/c)
xa−1 exp (−bxc) . (9)

The generalized gamma has the mean:

µ =
b−

1
c Γ

(
1+a

c

)

Γ
(

a
c

) , (10)

and a variance:

σ2 =
b−

2
c

(
+Γ

(
2+a

c

)
Γ

(
a
c

)− (
Γ

(
1+a

c

))2
)

(
Γ

(
a
c

))2 . (11)
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The DF of the generalized gamma is:

DFGG = 1− Γ
(

a
c , bxc

)

Γ
(

a
c

) . (12)

The SF of the generalized gamma is:

SGG =
Γ

(
a
c , bxc

)

Γ
(

a
c

) . (13)

2.3. Ferenc–Neda function

A new PDF has been recently introduced, Fer-
enc and Néda (2007), in order to model the normal-
ized area/volume in a 2D/3D PVT:

FN(x; d) = C × x
3d−1

2 exp (−(3d + 1)x/2) , (14)

where C is a constant:

C =
√

2
√

3 d + 1

2 23/2 d (3 d + 1)−3/2 d Γ (3/2 d + 1/2)
, (15)

and d(d = 1, 2, 3) is the dimension of the space under
consideration. We will call this function the Ferenc–
Neda PDF; it has the mean:

µ = 1 , (16)

and variance:
σ2 =

2
3d + 1

. (17)

The DF of the Ferenc–Neda function when d = 2 is:

DFFN2 =

−49
15

√
2
√

7x5/2e−7/2 x

√
π

− 7/3
√

2
√

7x3/2e−7/2 x

√
π

−
√

2
√

7
√

xe−7/2 x

√
π

+ erf
(
1/2

√
2
√

7
√

x
)

, (18)

where the error function erf(x) is defined as:

erf(x) =
∫ x

0

2
e−t2

√
π

dt . (19)

The SF of the Ferenc–Neda function when
d = 2 is:

SFN2 =

1 +
49
15

√
2
√

7x5/2e−7/2 x

√
π

+7/3
√

2
√

7x3/2e−7/2 x

√
π

+
√

2
√

7
√

xe−7/2 x

√
π

− erf
(
1/2

√
2
√

7
√

x
)

. (20)

The DF of the Ferenc–Neda function when d = 3 is:

DFFN3 =

1− e−5 x − 5 e−5 xx− 25
2

e−5 xx2

−125
6

e−5 xx3 − 625
24

x4e−5 x . (21)

The SF of the Ferenc–Neda function when d = 3 is

SFN3 = e−5 x + 5 e−5 xx +
25
2

e−5 xx2

+
125
6

e−5 xx3 +
625
24

x4e−5 x . (22)

2.4. Numerical results

In what follows, we will model the PVT in
which the seeds are computed through a random pro-
cess. The χ2 is computed according to the formula:

χ2 =
N∑

i=1

(Ti −Oi)2

Ti
, (23)

where N is the number of bins, Ti is the theoretical
value and Oi is the experimental value. The first test
of the PDFs presented in the previous section can be
done by analysing the Voronoi cell normalized area-
distribution in 2D, see Table 1.

Table 1. Values of χ2 for the cell normalized area-
distribution function in 2D. Ti are the theoretical
frequencies and Oi are the sample frequencies. We
have 25087 Poissonian seeds and 40 intervals in the
histogram.

PDF parameters χ2

H(x;c) (Eq. (3)) c=3.55 83.48
f(x;d) (Eq. (14)) d=2 71.83
G(x;a,b,c) (Eq. (9)) a=3.15 58.9

b=2.72
c=1.13

Table 2 reports the parameters of the PDF of
the volume distribution in 3D.

Table 2. Values of χ2 for cell normalized volume-
distribution function in 3D. Ti are the theoretical
frequencies and Oi are the sample frequencies. We
have 21378 Poissonian seeds and 40 intervals in the
histogram.

PDF parameters χ2

H(x;c) (Eq. (3)) c=5.53 93.86
f(x;d) (Eq. (14)) d=3 134.15
G(x;a,b,c) (Eq. (9)) a=4.68 58.59

b=3.87
c=1.18

Fig. 1 reports an example of SF in 2D PVT
(areas) and Fig. 2 an example of SF in 3D PVT
(volumes).
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Fig. 1. SF of normalized area-distribution func-
tion in 2D when we have 25087 Poissonian seeds and
40 intervals: the empty circles represent the Voronoi
volumes and the full line the theoretical value of SGG

(generalized gamma function) as given by Eq. (13).

Fig. 2. SF of normalized volume-distribution func-
tion in 3D when we have 21378 Poissonian seeds and
40 intervals: the empty circles represent the Voronoi
volumes and the full line the theoretical value of SK

(Kiang function) as given by Eq. (8).

3. RADIUS DISTRIBUTION
OF THE 3D PVT

We now analyse the distribution in effective
radius R of the 3D PVT. We assume that the vol-
ume of each cell, v, is:

v =
4
3
π(

R

ρ
)3 , (24)

where ρ is the length that connects the normalized
radius to the observed one. In what follows, we de-
rive the PDF for radius and related quantities for the
Kiang function and Ferenc–Neda function.

3.1. Kiang function of the radius

The PDF, HR(R; c), of the radius correspond-
ing to the Kiang function as represented by Eq. (3)
is

HR(R; c) =
4 c

(
4/3 cπ R3

ρ3

)c−1

e
−4/3 cπ R3

ρ3 π R2

Γ (c) ρ3
,

(25)
where 0 ≤ R < ∞, c > 0 and ρ > 0. The Kiang
PDF of the radius has the mean:

µ = 1/2
3
√

2 3
√

3Γ (1/3 + c)
3
√

c 3
√

πΓ (c)
ρ , (26)

and variance:

σ2 =

1
4

3
2
3 2

2
3

(
Γ (2/3 + c) Γ (c)− (Γ (1/3 + c))2

)

c2/3π2/3 (Γ (c))2
ρ2 .(27)

The DF of the Kiang function of the radius is:

DFKR = 1−
Γ

(
c, 4/3 cπ (R

ρ )3
)

Γ (c)
. (28)

The survival function of the radius is:

SKR =
Γ

(
c, 4/3 cπ (R

ρ )3
)

Γ (c)
. (29)

3.2. Ferenc–Neda function of the radius

The PDF as a function of the radius, obtained
from Eq. (14) and inserting d = 3, is:

FNR(R; d) =
400000 π5R14e

− 20
3

π R3

ρ3

243 ρ15
. (30)

The mean of the Ferenc–Neda function is:

µ = 0.6ρ , (31)

and the variance is:

σ2 = 0.0085ρ2 . (32)

The DF of the Ferenc–Neda function of the
radius when d = 3 is:

DFFN3R =

1− e
− 20

3
π R3

ρ3 − 20
3

e
− 20

3
π R3

ρ3 R3πρ−3

−200
9

e
− 20

3
π R3

ρ3 R6π2ρ−6

−4000
81

e
− 20

3
π R3

ρ3 R9π3ρ−9

−20000
243

e
− 20

3
π R3

ρ3 R12π4ρ−12 . (33)
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The SF of the Ferenc–Neda function of the
radius when d = 3 is:

SFN3R =

e
− 20

3
π R3

ρ3 +
20
3

e
− 20

3
π R3

ρ3 R3πρ−3

+
200
9

e
− 20

3
π R3

ρ3 R6π2ρ−6

+
4000
81

e
− 20

3
π R3

ρ3 R9π3ρ−9

+
20000
243

e
− 20

3
π R3

ρ3 R12π4ρ−12 . (34)

4. SELF-SIMILAR VOID DISTRIBUTION

The statistics of the voids between galaxies
have been analysed in von Benda-Beckmann and
Müller (2008) with the following self-similar SF in
the following, SSS

SSS = e−
(

R
s1λ

)p1−
(

R
s2λ

)p2

, (35)

where λ is the mean separation between galaxies, s1
and s2 are length factors, and p1 and p2 are powers.
The DF of the self-similar distribution is:

DFSS = 1− e−
(

R
s1λ

)p1−
(

R
s2λ

)p2

. (36)

The PDF of the self-similar distribution is:

pSS(R) =

e−( R
s1λ )p1−( R

s2λ )p2
(( R

s1λ )p1p1 + ( R
s2λ )p2p2)

R
. (37)

Fig. 3. The survival function SSS of the self-similar
distribution in radius of N/S1 as represented by Eq.
(35) (full line), the survival function, SFN3R, for the
Ferenc–Neda function of the radius as represented by
Eq. (34) when d = 3, ρ = 12.5 Mpc and χ2 = 4319
with 100 points (dashed line). The survival function
SKR of the radius of the Kiang function as repre-
sented by Eq. (29) when ρ = 12.5 Mpc, c = 5.53 and
χ2 = 4076 with 100 points (dot-dashed line).

At present, it is not possible to find an analytical
expression for the integral that defines the average
value of the self-similar distribution.

A comparison of the survival function of self-
similar voids with the survival function of the radii
of the two PDFs analysed here is reported in Fig. 3.

The two fits of Fig. 3 are not satisfactory be-
cause we are making a comparison between the ra-
dius of projected voids and the 3D radii of the nor-
malized volume distribution of the PVT. This fact
is confirmed from the high values of χ2 computed
according to Eq. (23).

5. THE SECTIONAL PVT

The existence of voids between galaxies is nor-
mally deduced from a projected distribution in as-
tronomical slices such as the 2dFGRS S3; see Fig.
1 in von Benda-Beckmann and Müller (2008). This
fact motivates the analysis of the sectional Voronoi
tessellation, also known as Vp(2, 3); see Okabe et al.
(1992). A previous analysis has shown that a cell
belonging to the intersection between an arbitrary
plane and the faces of the Voronoi polyhedrons is al-
most surely a non-Voronoi cell; see details in Chiu
et al. (1996). Here, we first model the normalized
area-distribution Vp(2, 3) with Kiang PDFs as repre-
sented by Eq. (3), see Table 3.

Table 3. Values of χ2 for the cell normalized area-
distribution function of Vp(2, 3); here Ti are the the-
oretical frequencies and Oi are the sample frequen-
cies. We have 8517 Poissonian seeds and 40 intervals
in the histogram.

PDF parameters χ2

H(x;c) (Eq. (3)) c=2.07 114.41
p(x;b) (Eq. (38)) d=1 85.38

In the case of n cuts, we can compute the av-
erage value of c, c, and the standard deviation σ, see
Table 4.

Table 4. Average value of c according to the Kiang
function, Eq. (3)), for Vp(2, 3), when 50 cuts are
considered. Here we have 25087 Poissonian seeds.

PDF name c σ
H(x;c) (Eq. (3)) Kiang 2.25 0.11

A test of this value can be performed on the
unpublished manuscript of Ken Brakke available at
http://www.susqu.edu/brakke/aux/
downloads/papers/3d.pdf .
Table 4 of this paper is dedicated to the 3D
plane cross-sectional statistics E(area) = 0.6858 and
Var(area) = 0.2269. When a typical run of ours is
normalized to the average value rather than to 1,
our result is Var(area) = 0.2266 which means that
our numerical evaluation differs by 2/10000 from the
theoretical result. We recall that in the case of the
normalized area-distribution function in 2D, we have
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c ≈ 4 and we can therefore speak of a decrease of c
by a factor 2. The decrease of c for Vp(2, 3) was first
derived in Fig. 4 of Zaninetti (2006).

Another PDF that can be considered in order
to model the normalized area distribution of Vp(2, 3)
is the exponential distribution:

p(x) =
1
b

exp−x

b
, (38)

which has the average value:

x = b . (39)

In the case of the normalized areas, b = 1. Table 3 re-
ports the χ2 values of the two distributions adopted
here. Once the statistics of the normalized area dis-
tribution of an arbitrary cut Vp(2, 3) are known, we
can model the radius distribution. We therefore con-
vert the area of each cell A to an equivalent radius
R:

R =

√
A

π
. (40)

We also briefly recall that the problem of stereol-
ogy is to deduce the true size distribution N(R) of
3D-volumes from the distribution n(r) of apparent
circles in 2D.

5.1. Kiang distribution of Vp(2, 3) in radius

The PDF, HR23(R; c), as a function of the ra-
dius corresponding to the Kiang function as repre-
sented by Eq. (3) for Vp(2, 3) is:

HR23(R; c) =
2 c

(
cπ R2

ρ2

)c−1

e−
cπ R2

ρ2 π R

Γ (c) ρ2
, (41)

where 0 ≤ R < ∞, c > 0 and ρ > 0. The Kiang
PDF of the radius for Vp(2, 3) has the mean:

µ =
ρ Γ (c + 1/2)√

c
√

πΓ (c)
, (42)

and variance:

σ2 =
ρ2

(
c (Γ (c))2 − (Γ (c + 1/2))2

)

cπ (Γ (c))2
. (43)

The DF of the Kiang function of the radius, DFKR23,
for Vp(2, 3) is:

DFKR23 = 1−
Γ

(
c, 2 cπ R2

ρ2

)

Γ (c)
. (44)

The survival function SKR23 of the radius for
Vp(2, 3) is:

SKR23 =
Γ

(
c, 2 cπ R2

ρ2

)

Γ (c)
. (45)

A comparison of the survival function of self-
similar voids with the survival function of the radius
for Vp(2, 3) of the exponential distribution is reported
in Fig. 4.

Fig. 4. The survival function SSS of the self-similar
distribution in radius of N/S1 as represented by Eq.
(35) (full line), the survival function SKR23 of the
radius of the Kiang function for Vp(2, 3) as repre-
sented by Eq. (45) when ρ = 13 Mpc, c = 2.25 and
χ2 = 67.1 with 100 points (dot-dashed line). The
survival function SER23 of the radius of the expo-
nential distribution for Vp(2, 3) as represented by Eq.
(50) when ρ = 7 Mpc and χ2 = 9.27 with 100 points
(dashed line).

5.2. Exponential distribution of Vp(2, 3)
in radius

The PDF, pR23(R; c), as a function of the ra-
dius corresponding to the exponential distribution as
represented by Eq. (38) for Vp(2, 3) is:

pR23(R; c) =
2 e−

π R2

ρ2 π R

ρ2
, (46)

where 0 ≤ R < ∞, ρ > 0. The exponential PDF of
the radius for Vp(2, 3) has the mean:

µ =
π3/2

2 ρ2
(

π
ρ2

)3/2
, (47)

and variance:

σ2 =
ρ2 (4− π)

4 π
. (48)

The DF of the exponential distribution in radius,
DFER23, for Vp(2, 3) is:

DFER23 = 1− e−
π R2

ρ2 . (49)
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The survival function SER23 of the radius for
Vp(2, 3) is:

SER23 = e−
π R2

ρ2 . (50)

Fig. 4 reports a comparison between the sur-
vival function of self-similar voids and the exponen-
tial distribution for Vp(2, 3).

In this case, the two types of fit in Fig. 4
are satisfactory because we are making a comparison
between the observed projected radius of voids and
the projected radius of the Voronoi volumes. The
smaller χ2 associated with the exponential distribu-
tion can be considered a consequence of the fact that
the statistics of the normalized area distribution of
the cuts are better described by an exponential dis-
tribution than by the Kiang function, see; Table 3.

The final comparison between the four sam-
ples of void size statistics as represented in Fig. 4
of von Benda-Beckmann and Müller (2008) and our
survival function of the radius of the exponential dis-
tribution for Vp(2, 3) is reported in Fig. 5.

Fig. 5. The survival function SSS for the self-
similar distribution in radius of N/S1, N/S2, N/S3
and N/S4, as reported in Fig. 4 of von Benda-
Beckmann and Müller (2008) (full lines), as repre-
sented by the survival function SER23 of the radius
of the exponential distribution for Vp(2, 3) as repre-
sented by Eq. (50) when ρ = 7 Mpc, ρ = 9 Mpc,
ρ = 13 Mpc and ρ = 17.7 Mpc (dashed lines).

6. LARGE-SCALE STRUCTURE

We briefly review the status of the knowledge
of the Hubble constant, reference magnitude of the
sun, luminosity function of galaxies, Malmquist bias
and 3D Poissonian Voronoi diagrams.

6.1. The adopted constants

The first important evaluation of the Hubble
constant is through Cepheids (key programs with

HST) and type Ia Supernovae; see Sandage et al.
(2006), H0 = (62.3± 5) km s−1 Mpc−1. The second
important evaluation comes from three years of ob-
servations with the Wilkinson Microwave Anisotropy
Probe; see Table 2 in Spergel et al. (2007), H0 =
(73.2 ± 3.2)k km s−1 Mpc−1. In what follows, we
will take the average value of these two important
evaluations: H0 = 67.65 km s−1 Mpc−1. The Hub-
ble constant is also reported as
H0 = 100h km s−1 Mpc−1, with h = 1 when h is not
specified; in our case h = .6765.

Another quantity that should be fixed in order
to continue is the absolute magnitude of the Sun in
the bJ filter of the 2dFGRS M¯ = 5.33; see Colless
et al. (2001), Tempel et al. (2009) and Eke et al.
(2004).

6.2. Malmquist bias

This bias was originally applied to stars, see
Malmquist (1920) and Malmquist (1922), and was
then applied to the galaxies by Behr (1951). We now
introduce the concept of limiting apparent magni-
tude and the corresponding completeness in absolute
magnitude of the considered catalog as a function of
redshift. The observable absolute magnitude as a
function of the limiting apparent magnitude, mL, is:

ML = mL − 5 log10

(
c z

H0

)
− 25 . (51)

The previous formula predicts, from a theoretical
point of view, the upper limit on the absolute maxi-
mum magnitude that can be observed in a catalog of
galaxies characterized by a given limiting magnitude.

The interval covered by the LF of galaxies,
∆M , is defined by:

∆M = Mmax −Mmin , (52)

where Mmax and Mmin are the maximum and min-
imum absolute magnitude of the LF for the consid-
ered catalog. The real observable interval in absolute
magnitude, ∆ML, is

∆ML = ML −Mmin . (53)

We can therefore introduce the range of observable
absolute maximum magnitude expressed in percent,
ε(z), as:

εs(z) =
∆ML

∆M
× 100 . (54)

This is a number that represents the completeness
of the sample and, given the fact that the limiting
magnitude of the 2dFGRS is mL=19.61, it is pos-
sible to conclude that the 2dFGRS is complete for
z ≤ 0.0442 . This efficiency, expressed as a percent-
age, can be considered a version of the Malmquist
bias.
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6.3. Luminosity function of galaxies

The Schechter function, introduced by
Schechter (1976), provides a useful fit for the LF
(luminosity function) of galaxies:

Φ(L)dL = (
Φ∗

L∗
)(

L

L∗
)α exp

(− L

L∗
)
dL . (55)

Here, α sets the slope for low values of L, L∗ is the
characteristic luminosity and Φ∗ is the normaliza-
tion. The equivalent distribution in absolute magni-
tude is:

Φ(M)dM = (0.4ln10)Φ∗100.4(α+1)(M∗−M)

× exp
(−100.4(M∗−M)

)
dM , (56)

where M∗ is the characteristic magnitude as derived
from the data. The parameters of the Schechter func-
tion for the 2dFGRS can be found on the first line
of Table 3 in Madgwick (2002) and are reported in
Table 5.

Table 5. Parameters of the Schechter function for
the 2dFGRS.

parameter 2dFGRS
M∗ − 5 log10 h [mag] (-19.79 ± 0.04)
α -1.19 ± 0.01
Φ∗

[
h3 Mpc−3

]
((1.59 ± 0.1)10−2)

We now introduce f , the flux of radiation ex-
pressed in units of L¯ Mpc−2, with L¯ representing
the luminosity of the Sun. The joint distribution in
z, redshift and f, see (1.104) in Padmanabhan (1996)
or (1.117) in Padmanabhan (2002), is:

dN

dΩdzdf
= 4π

( cl

H0

)5
z4Φ(

z2

z2
crit

) , (57)

where dΩ, dz, and df represent the differential of the
solid angle, redshift, flux, and cl represents the speed
of light.

This relationship has been derived assuming
z ≈ V

cl
≈ H0r

cl
with r representing the distance of the

galaxy in Mpc. The critical value of z, zcrit, is:

z2
crit =

H2
0L∗

4πfc2
l

. (58)

The number of galaxies in z and f as given by Eq.
(57) has a maximum at z = zpos−max, where:

zpos−max = zcrit

√
α + 2 , (59)

which can be re-expressed as:

zpos−max =
√

2 + α
√

100.4 M¯−0.4 M∗
H0

2
√

π
√

fcl
. (60)

The number of galaxies, NS(z, fmin, fmax),
comprised between the minimum value of flux, fmin,

and the maximum value of flux, fmax, can be com-
puted from the following integral:

NS(z) =
∫ fmax

fmin

4π
( cl

H0

)5
z4Φ(

z2

z2
crit

)df . (61)

This integral does not have an analytical solution
and, therefore, a numerical integration must be per-
formed. The total number of galaxies in the 2dFGRS
is reported in Fig. 6 as well as the theoretical curves
obtained by the numerical integration of Eq. (57).

Fig. 6. The galaxies in the 2dFGRS with
13.34 ≤ bJmag ≤ 19.61 or 1540 L¯ Mpc−2 ≤ f ≤
493844L¯ Mpc−2, are organized as frequencies ver-
sus heliocentric redshift (empty stars). The theoret-
ical curve generated by the integral of the Schechter
function in flux, Eq. (61), (full line) is drawn. The
maximum in the frequencies of observed galaxies is
at z = 0.108. In this plot, M¯ = 5.33 and h = 0.67.
The vertical dotted line represents the boundary be-
tween complete and incomplete samples.

A careful inspection of the previous figure al-
lows to conclude that the theoretical integral fits well
the experimental data up to z = 0.0442. Beyond this
value, the presence of the Malmquist bias decreases
the number of observable galaxies and the compari-
son between the theory and observations cannot be
made.

6.4 Voronoi diagrams

Voronoi diagrams represent a useful tool for
describing the spatial distribution of galaxies and, as
an example, van de Weygaert and Icke (1989) iden-
tified the vertexes of irregular Voronoi polyhedrons
with Abell clusters. Another example is provided
by Zaninetti (1991) where the galaxies were first in-
serted on the faces of the irregular Voronoi polyhe-
drons and a power law distribution for the seeds was
adopted. Later, the galaxies were still inserted on
the faces of the irregular Voronoi polyhedrons but
Poissonian seeds were adopted, see Zaninetti (2006,
2008b, 2010a). Adopting the same algorithm devel-
oped in Zaninetti (2010a), one slice of the 2dFGRS
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with the number of galaxies as a function of z as
given by Eq. (61) is simulated; see Fig. 7.

Fig. 7. A Voronoi slice 75◦ long and 3◦ wide.
The range of the flux is 2500 L¯ Mpc−2 ≤ f ≤
286808L¯ Mpc−2 and the number of galaxies is
19895. The red circle denotes the confusion distance
as given by Eq. (64).

This simulation should be compared with
Fig. 1 in von Benda-Beckmann and Müller
(2008) and with a 3◦ slice of the 2dF-
GRS Image Gallery available at the web site
http://msowww.anu.edu.au/2dFGRS/. A little
needs to be said about the number of seeds which
should be used in order to simulate the observed
slices of the 2dFGRS. The average volume of the
voids is the side of the box in Mpc divided by the
number of seeds. The average diameter of the voids,
DVoronoi, is:

DVoronoi =
(

side [Mpc]
No of seeds

)1/3

. (62)

The theoretical average diameter Dth can be ob-
tained from the average value Eq. (47) of the ex-
ponential distribution of Vp(2, 3) in radius once the
maximum value of ρ which fits the von Benda-
Beckmann and Müller (2008) data, see Fig. 5, is
adopted:

Dth = µ
2
h

. (63)

The equality DVoronoi = Dth allows to obtain the
number of Poissonian seeds.

A particular attention should be paid to the
fact that the astronomical slices are not a plane
which intersects a Voronoi network. In order to
quantify this effect, we introduce a confusion dis-
tance Dc as the distance after which the altitude of
the slices becomes equal to the observed average di-
ameter Dobs

Dc tan(α) = Dobs , (64)

where α is the opening angle of the slice and Dobs is
the average diameter of the voids. The case of 2dF-
GRS α = 3◦ and therefore Dc = 498.5 Mpc when
Dobs = 26.12 Mpc, is illustrated by the red circle in
Fig. 7.

7. CONCLUSIONS

The PDFs which are usually used to model the
normalized volume distribution of the 3D PVT are
gamma type distributions such as the Kiang func-
tion, Eq. (3), and the new Ferenc–Neda function,
Eq. (14).

Here, in order to make a comparison with the
self-similar distribution of voids, we derived the sur-
vival distribution of the Kiang function, Eq. (8), and
of the Ferenc–Neda function, Eq. (22).

On adopting an astrophysical point of view,
the cut Vp(2, 3) may model the voids between galax-
ies as given by astronomical slices of the Mille-
nium catalog. The analysis of the normalized ar-
eas of Vp(2, 3) is a subject of research rather than a
well-established fact and we have fitted them with
the Kiang function and the exponential distribution.
The χ2 value indicates that the exponential distri-
bution fits more closely the normalized area distri-
bution of Vp(2, 3) than does the Kiang function; see
Table 3. This fact follows from the comparison be-
tween the self-similar survival function and the ex-
ponential and Kiang distributions of the radius; see
Fig. 4. Therefore, the one parameter survival func-
tion of the radius of the exponential distribution for
Vp(2, 3), SER23, as represented by Eq. (50), may
model the voids between galaxies as well as the five
parameter self-similar survival function.

The observed 2dFGRS slices can be simulated
but the behavior of the luminosity function for galax-
ies and the consequent number of galaxies as a func-
tion of the redshift should be carefully analysed.

We are planning, in future projects:
(i) To insert the thickness of the faces of PVT

and to model the connected modification of
the survival function.

(ii) To apply the technique here developed to the
real data sets, Millennium simulation, for ex-
ample. The 3D nature of the method and
detailed density mapping of the voids should
be superior to other void identification algo-
rithms as suggested by van de Weygaert and
Schaap (2009).

REFERENCES

Aurenhammer, F. and Klein, R.: 2000, In: Hand-
book of computational geometry ed. Sack, J.-
R., Amsterdam: North-Holland.

Barrow, J. D. and Coles, P.: 1990, Mon. Not. R.
Astron. Soc., 244, 188

Behr, A.: 1951, Astron. Nachr., 279, 97.
Bernardeau, F. and van de Weygaert, R.: 1996, Mon.

Not. R. Astron. Soc., 279, 693.
Chiu, S. N., Weygaert, R. V. D., and Stoyan, D.:

1996, Advances in Applied Probability, 28,
356.

27



L. ZANINETTI

Coles, P.: 1991, Nature, 349, 288.
Colless, M., Dalton, G., Maddox, S. et al.: 2001,

Mon. Not. R. Astron. Soc., 328, 1039.
Descartes, R.: 1644, Principia Philosophiae, Amster-

dam: Ludovicus Elzevirius.
Ebeling, H. and Wiedenmann, G.: 1993, Phys. Rev.

E, 47, 704.
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PRAKTIQNE STATISTIKE ZA PRAZNINE IZME�U GALAKSIJA
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Originalni nauqni rad

Me�ugalaktiqke praznine su identi-
fikovane zapreminama iz Poason - Voronoj
formalizma. Izvedene su dve nove funkcije
zavisnosti broja praznina od ǌihovog radi-
jusa. 2D projekcija Poason - Voronoj mozaika
je modelirana Kiangovom funkcijom i ek-

sponencijalnom funkcijom. Na taj naqin su
proizvedene dve nove funkcije broja prazni-
na kao alternativa za funkcije izvedene iz
”samo-sliqnih” distribucija. Simulirane su
2D projekcije iz posmatraqkog kataloga 2dF
Galaxy Redshift Survey.
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