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RADAR TIME DELAYS IN THE DYNAMIC THEORY OF GRAVITY
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SUMMARY: There is a new theory gravity called the dynamic theory, which is
derived from thermodynamic principles in a five dimensional space, radar signals
travelling times and delays are calculated for the major planets in the solar system,
and compared to those of general relativity. This is done by using the usual four
dimensional spherically symmetric space-time element of classical general relativistic
gravity which has now been slightly modified by a negative inverse radial exponential
term due to the dynamic theory of gravity potential.
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1. INTRODUCTION

There is a new theory called the Dynamic The-
ory of Gravity (DTG). It is derived from classical
thermodynamics and requires that Einstein’s pos-
tulate of the constancy of the speed of light holds
(Williams 1997). Given the validity of the postulate,
Einstein’s theory of special relativity follows right
away (Williams 2001). The dynamic theory of grav-
ity (DTG) through Weyl’s quantum principle also
leads to a non-singular electrostatic potential of the
form:

K .

e &
where K is a constant and ) is a constant defined by
the theory. The DTG describes physical phenomena
in terms of five dimensions: space, time and mass
(Williams 2001). By conservation of the fifth dimen-
sion we obtain equations which are identical to Ein-
stein’s field equations and describe the gravitational
field. These equations are similar to those of general
relativity and are given by:
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Here TP is the surface energy-momentum tensor
which may be found within the space tensor and is
given by:
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and TL” is the space energy-momentum tensor for

matter under the influence of the gauge fields also
given by Williams (2001):
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This can further be written in terms of the surface
metric in the following way:
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and:

This is a statement required, by the conservation of
the fifth dimension, and the surface indices v, «, .
= 0,1,2,3 and space index i, j, k, 1 = 0,1,2,3,4, and

. dyt oyt (
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where the surface field tensor will be given by:
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for i =0,1,2,3 and y2 = gwii.
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It was shown by Weyl that the gauge fields may be
derived from the gauge potentials and the compo-
nents of the 5-dimensional field tensor F;; given by
the 5x5 matrix given by (8). Now the determination
of the fifth dimension may be seen, for the only phys-
ically real property that could give Einstein’s equa-
tions is the gravitating mass or it’s equivalent mass,
(Hunter et al. 1997). Finally the dynamic theory of
gravity further argues that the gravitational field is
a gauge field linked to the electromagnetic field in
a five-dimensional manifold of space-time and mass,
but, when conservation of mass is imposed, it may
be described by the geometry of the four-dimensional
hyper-surface of space-time, embedded into the five-
dimensional manifold by the conservation of mass.
The five-dimensional field tensor can only have one
nonzero component Vo, which must be related to the
gravitational field, and the fifth gauge potential must
be related to the gravitational potential.

The theory makes its predictions for red-shifts
by working in this five dimensional geometry of
space, time, and mass, and determines the unit of
action in the atomic states in a way that can be
calculated with the help of quantum Poisson brack-
ets when covariant differentiation is used (William
2001):

[2#,p"] ® = ihg"? {6,.q + T4 | 2°} @ 9)
In (9) the vector curvature is contained in the
Christoffel symbols of the second kind and the gauge
function ® is a multiplicative factor in the metric
tensor g”?, where the indices take the values: v,q
= 0,1,2,3,4. In the commutator, x* and p” are the

space and momentum variables respectively, and fi-
nally § ,4 is the Kronecker delta. In DTG the
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momentum ascribed as a variable canonically con-
jugated to the mass is the rate at which mass may
be converted into energy. The canonical momentum
is defined as follows:

P4 = MUy (10)

where the velocity in the fifth dimension, is given by:

o
=L 11
v = (11)

Now “./ is a time derivative, gamma having units of
mass density (kg/m?), a, is a density gradient with

units of kg/m*. In the absence of curvature (8) be-
comes:

[z#,p"] @ = ihdVID . (12)

2. THE LINE ELEMENT OF THE
DYNAMIC THEORY OF GRAVITY

In the DTG the metric is not different from
that of general relativity except for an exponential
term with an 1/r dependence, and A is a constant
determined by the theory. Therefore we can write
the line element of dynamic gravity in the following
way:

2G M
ds? = & <1 — GT )‘/T> dt® —
c3r
—1
(1 2GM _A/T,) PR

T (d€2 + sin® 0dyp?) . (13)
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Fig. 1. The relative position of a planet, with
respect to the earth. A schematic diagram of the
radar-ranging time delay experiment. Radar waves
are sent from the Farth to a distant reflector, so that
they pass close to the Sun. They are reflected as
all electromagnetic radiation is. There is an excess
time delay between sending and return above what
would be expected were the signals propagating along
straight lines in flat space-time. Time delay caused
by the curvature of the space-time in the vicinity
of the Sun is an important test of general relativity
(Hartle 2003).
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3. RADAR DELAY IN THE DYNAMIC
THEORY OF GRAVITY

With reference to Fig. 1 we can write that:

Vi ge Vi ge
bayny = 2 VO - +/0 =1

If we now define £ = /r2 —r2 we then have that

d¢ = Tjr = and finally the round travel time be-
T 77‘9
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Since A\, rs < r to first order approximation, the
integral above takes the form:

tayn(tot) =
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Since ¢ > 0 and 7. > 7, (15) and A = GMgun/c?,
(15) can be written as:
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In (16) 7, is the distance of closest approach taken
to be equal to the radius of the sun, 7. is the earth’s
orbital radius, r, is the orbital radius of the planet,
and ) is a parameter defined by the dynamic theory

(18)

of gravity which has the value A = G Mgy, /c?. Sub-
stituting for the limits, expression (16) can be further
simplified if we always remember that r; << re, rp
to:

(19)

The above equation results in a delay between clas-
sical signal propagation and that of dynamic gravity
which is equal to:

At = tdyn(tot) — telas (tOt) =
2 2 2
Cpat e e, ()],

2
Ts

Also the delay between general relativity and dy-
namic gravity takes the form:

At gyn(tot) — trel(tot) = 2 [— - =
C

(21)
Next we will numerically evaluate equation (16) and
we will compare it with that of general relativity:

1 —|— QA dr 1 —|— QA dr
trel tOt
(22)
which integrates into the expression:
2
trel(tot) = — [ r2 —r24

c
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4. CALCULATION OF RADAR
TRAVELING TIMES

Our numerical calculations of the predicted to-
tal traveled times for the major planets in the solar
system are shown in Table 1 and where in the third
column the two digits in the bracket represents the
only difference between the indicated travelling total
times in the fifteen digital accuracy calculation. This
difference, and for all practical purposes can be con-
sidered to be the same, between the two theories. All
the planetary distances r,, are the planetary orbital
radii and r. is the orbital radius of the earth (Allen
2000). For this planetary configuration between the
sun the earth and the planets we can easily see that
s << Tp, Te-
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Table 1.
Planetary Classical Relativistic Relativistic Dynamic Dynamic
Orbital Total Time and Delay Delay Delay
Radii x108 (min) Dynamic (usec) (usec) (usec)
Km Total time
(min)
Mercury 23.071657 23.071661 210.03298 210.03306520  209.996
57.909175 8730607 3736106 9764298 0644 5082
(18)
Venus 28.664604 28.664608 221.77889 221.77897210  221.742
108.20893 5366178 2329327 6458422 7128 4150
(39)
Mars 41.977001 41.977005 235.77586 235.77593630  235.739
227.93664 2778753 2074730 0526579 3704 3958
(43)
Jupiter 103.18338 103.18338 258.85082 258.85090554  258.814
778.41202 0980308 5294488 9682436 1638 3482
(89)
Saturn 175.26830 175.26831 270.23402 270.23410510  270.197
1426.7274 7725353 2229253 9226854 1500 5480
(54)

5. WHAT DISTANCE OF
CLOSEST APPROACH MAKES
DTG DELAYS ZERO?

Solving relations (20) and (21) for the distance
of the closest approach ry that will make the corre-
sponding delays equal to zero, we obtain:

L A
T (A2
ProductLog i%]

~ 4 24)

A
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and also:
2re

e = —e'p (25)

(re +1p)

where ProductLog(z) function is the principal solu-
tion, of equations of the form z = we" also satis-
fying the following differential equation: (dw/dz) =
w/z(1 4+ w) (Mathematica 4.0, 1999).
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6. COMPARING DYNAMIC
RELATIVISTIC AND
CLASSICAL EFFECTS

The changes in the delay times between the
dynamic and the classical propagation now become:

Atdyn
tdyn telas

4\? T 4r.r
~N—— 14+ 21 °p 2
oo [ ae (5] e

S

o tdyn — telas

and between the dynamic time and relativistic time
we obtain:

Atdyn _ tdyn — trel

tdyn trel
402

re [(re +7p)+ 2\ In (‘”ﬂ’“ﬁ)} '

2
Ts

(27)
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The Table 2 shows the magnitude of these quantities
for the earth fixed at the position of its orbital dis-
tance and similarly the planets at their orbital radii
which of course is not the most realistic position for
radar measurements.
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Table 2.

tdyn—tre tayn —tclas
Planetary At _ ldyn“trel At _ Idyn—Telas

t trel t telas
Orbital
Radii
x 105 Km

Mercury: 10714 1077

57.909175

Venus: 1014 1077

108.20893

Mars:
227.93664

10~14 10~7

Jupiter: 10714 1078

778.41202

Saturn: 1015 10~8

1426.7274.
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Fig. 2. Atgyn/tayn vs planetary distances at peri-
helion 1, (cm).
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Fig. 3. Atayn/tiyn vs. planetary distances at peri-
helion 1, (cm).

7. CONCLUSIONS

We have given a short introduction to the
dynamic theory of gravity. Next an approximate
first order calculation has been performed for ob-
taining the total traveling times of a radar signals
in the neighbourhood of the sun transmitted from
the earth. The planets considered are the ones indi-
cated in the Table 1 and all of them were assumed
to be away at their orbital radii distances. When
actual measurements of this kind are carried out it
could happen that this might not be the best plan-
etary configuration. In any case this is a standard
calculation that somebody can perform to test of a
new gravitational theory. It is anticipated that the
effects will be more evident if the planets are closer
to the sun which is the main massive body affect-
ing the signals gravitationally. It is also known that,
at the position of a superior conjunction, the delay
effects will become greater (Ohanian 1994).

From the numerical calculations of the total
traveling times, it appears that there is not much
of a significant difference, between dynamic gravity,
general relativity but classical propagation differs be-
ing slightly smaller. To get an idea on the magnitude
of this difference expressions describing the changes
of the delay times between dynamic gravity and gen-
eral relativity, as well as between dynamic gravity
and classical propagation, have been derived and nu-
merically evaluated for all the different planets and
the results are compared.

The delay difference between dynamic grav-
ity and general relativity is of the order of 1074 for
all examined planets except Saturn for which it is of
the order of 1071°. Next, the delay difference be-
tween dynamic gravity and classical propagation for
all planets appears to be of the order of 10~7 except
for Jupiter and Saturn for which it is of the order of
1075. Since dynamic gravity results in the same field
equations as general relativity, it would not be un-
justified to expect that delay effects on radio-signals
would not differ much from those of general relativ-
ity, and any difference would be really small but not
identical to that of general relativity. - With the help
of the evolving present day and also future technol-
ogy, such time differences might soon be accessible
so that the validity of dynamic gravity as compared
to general relativity might be finally understood and
assessed.
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KAINIILEILE PAJAPCROI' CUTHAJIA Y IJMHAMMYKOJ TEOPUJV 'PABUTAIIMNJE
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UDK 52-16
Opueurainu Hay¥HY Pao

Y HOBOj, aJITepHATWBHOj TEOPUjU, 3BAHO]
AWHAMUYKA TE€OPpHja IPABUTAIIM]E, KOja je U3BeIe-
Ha U3 TePMOJUHAMUYKUX IPUHIUIA Y II€TOIUMEH-
3MOHOM IIPOCTOPY, BPEMEHA Iy TOBAKkHA PALAPCKUAX
CUTHAJIa U BUXOBA OACTYIama U3padyHaTa Cy 3a
rJIaBHE IJIAHETE CyHUeBOr cucrteMa u ynopebena
ca OHMMA M3 OIINTE PEJIATUBHOCTHU. 8130 je
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ypabeno kopucrehin yeTBOpPOAMMEH3UOHU CHEPHO
CUMETPUYHU EJIEMEHT KJIACUYHE PeJaTUBHOCTU
KOjU je HEe3HATHO U3MEHEH HEraTUBHUM WH-
BEP3HUM DaJUjaJHUM CKCIIOHCHIN]aJHIM YJIaHOM
KOJU IIOTWYE M3 AMHAMUYKE TEOPHje I'DaBUTAIU-
je.



