STARK BROADENING PARAMETER TABLES FOR Ne II AND Ne III SPECTRAL LINES

M. S. Dimitrijević

Astronomical Observatory, Volgina 7, 11160 Belgrade-74, Serbia, Yugoslavia

(Received: October 22, 2001)

SUMMARY: Using a semiclassical approach, we have calculated electron-, proton-, He II-, Mg II-, Si II- and Fe II-impact line widths and shifts for 10 Ne II and 6 Ne III multiplets as a function of temperature and perturber density. For Ne II temperatures are: 5,000 K; 10,000 K; 20,000 K; 30,000 K; 50,000 K and 100,000 K and perturber densities from 10^{15} cm⁻³ up to 10^{20} cm⁻³. For Ne III temperatures are: 20,000 K; 50,000 K; 100,000 K; 200,000 K; 300,000 K and 500,000 K and perturber densities from 10^{17} cm⁻³ up to 10^{21} cm⁻³. Perturbers selected here, are the main perturbers in solar and stellar atmospheres.

1. INTRODUCTION

Neon is the most abundant element in the universe after hydrogen, helium, oxygen and carbon, and it is for example (Trimble, 1991) one of the products of hydrogen and helium burning in the orderly evolution of stellar interiors. Moreover, after the hydrogen-, helium-, and carbon - burning periods end in massive stars, neon burning starts. We note as well that Ne III lines have been identified in the spectrum of a solar active region (Thomas and Neupert, 1994). In order to enlarge as much as possible the available set of reliable Stark broadening data needed for the astrophysical and laboratory plasmas research, as well as for plasmas in industry, Stark broadening of Ne II, Ne III and Ne IV spectral lines has been investigated experimentally and theoretically (Milosavljević, Dimitrijević and Djeniže, 2001; Djeniže, Milosavljević and Dimitrijević, 2001). In order to complete this research providing complete data for spectral lines where it is possible to do with our standard accuracy, we have calculated within the semiclassical-perturbation formalism (Sahal-Bréchot 1969ab, see also Sahal-Bréchot 1974, Fleurier, Sahal-Bréchot and Chapelle 1977, Dimitrijević and Sahal-Bréchot 1984, Dimitrijević, Sahal-Bréchot and Bommier 1991, Dimitrijević and Sahal-Bréchot 1995a) electron-, proton-, ionized helium-, ionized magnesium-, ionized silicon-, and ionized iron-impact line widths and shifts for 10 Ne II and 6 Ne III multiplets. Consequently, data for all principal perturbers in the solar plasma are provided.

2. RESULTS AND DISCUSSION

The used formalism has been reviewed briefly e.g in Dimitrijević and Sahal-Bréchot (1995ab). All relevant details concerning the obtained results and the calculation procedure are published in Milosavljević, Dimitrijević and Djeniže (2001); Djeniže, Milosavljević and Dimitrijević (2001) and Dimitrijević (2002). Here, we present only tables of Stark broadening parameters. Atomic energy levels needed for

Table 1. This Table shows electron-, proton-, and He II-impact broadening parameters for Ne II for perturber densities 10^{15} cm⁻³ - 10^{20} cm⁻³ and temperatures from 5,000 up to 100,000 K. Electron-impact widths for the electron density of 10^{15} cm⁻³ are from Milosavljević, Dimitrijević and Djeniže (2001) and electron-impact shifts for the same electron density from Djeniže, Milosavljević and Dimitrijević (2001). Stark broadening parameters for densities lower than for tabulated values, are linear with perturber density. Transitions and averaged wavelengths for the multiplet (in Å) are also given in the Table. By dividing C by the corresponding full width at half maximum (Dimitrijević, Sahal-Bréchot and Bommier 1991), we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber density (the condition for the validity of the impact approximation lies between 0.1 and 0.5.

PERTURBER DI	ENSITY = 1.1	$E+15 \text{ cm}^{-3}$					
PERTURBERS ARE:		ELECT	FRONS	PROT	ONS	IONIZED	HELIUM
TRANSITION	T(K)	WIDTH (Å)	SHIFT (Å)	WIDTH (Å)	SHIFT (Å)	WIDTH (Å)	SHIFT (Å)
Ne II	5000.	0.317E-02	-0.607E-05	0.594E-04	-0.351E-05	0.844E-04	-0.350E-05
3507.9 Å	10000.	0.230E-02	-0.156E-04	0.101E-03	-0.691E-05	0.124E-03	-0.670E-05
C=0.35E+19	20000	0.168E-02	-0.194E-04	0.140E-03	-0.120E-04	0.154E-03	-0.111E-04
3s(2)P-	30000	0.144E-02	-0 184E-04	0.154E-03	-0 156E-04	0.166E-03	-0 135E-04
3p(2)S	50000	$0.126E_{-}02$	-0.220E-04	$0.169E_{-03}$	-0.198E-04	$0.181E_{-0.03}$	-0.172E-04
5p(2)5	100000.	0.1126E-02	-0.198E-04	0.188E-03	-0.249E-04	0.195E-03	-0.208E-04
No II	5000	0.346E-02	0 626F-05	0 500F-04	_0.012F_05	0 727F-04	-0.901E-05
2725 1 Å	10000	0.340E-02	0.020E-03	0.500E-04	-0.312E-03	0.121E-04	-0.301E-03
$C = 0.27E \pm 10$	20000	0.200E-02	-0.370E-04	0.034 ± -04 0.197 \pm 02	-0.172E-04	0.110E-0.03 0.142E 0.02	-0.102E-04
$C = 0.37 E \pm 19$ $2_{c}(4) P$	20000.	0.161E-02 0.152E-02	-0.469E-04	0.127 ± 0.03 0.144 \Exp 0.02	-0.280E-04	0.145E-05	-0.244E-04
$3S(4)\Gamma - 2n(4)D$	50000.	0.135E-02	-0.442E-04	0.144E-03	-0.336E-04	0.155E-05	-0.297E-04
3p(4)r	100000	0.151E-02	-0.340E-04	0.150E-05	-0.425E-04	0.109E-03	-0.352E-04
	100000.	0.113E-02	-0.450E-04	0.178E-03	-0.511E-04	0.184E-03	-0.424E-04
Ne II	5000.	0.284E-02	-0.434E-05	0.461E-04	-0.352E-05	0.664E-04	-0.350E-05
3343.3 A	10000.	0.206E-02	-0.146E-04	$0.804 \text{E}{-}04$	-0.689E-05	0.992 E-04	-0.667E-05
C=0.30E+19	20000.	0.149E-02	-0.191E-04	0.113E-03	-0.119E-04	0.126E-03	-0.110E-04
3s(4)P-	30000.	0.127E-02	-0.182E-04	0.126E-03	-0.153E-04	0.136E-03	-0.132E-04
3p(4)D	50000.	0.108E-02	-0.216E-04	0.138E-03	-0.194E-04	0.148E-03	-0.168E-04
	100000.	$0.947 \text{E}{-}03$	-0.189E-04	0.154 E-03	-0.243E-04	0.161E-03	-0.202E-04
Ne II	5000.	0.233E-02	-0.559E-05	0.434E-04	0.130E-05	0.617E-04	0.130E-05
2988.3 Å	10000.	0.169E-02	0.166E-05	0.734E-04	0.259E-05	$0.907 \text{E}{-}04$	0.255E-05
C = 0.24E + 19	20000.	0.123E-02	0.533E-05	0.102E-03	0.480E-05	0.112E-03	0.446E-05
3s(4)P-	30000.	0.105E-02	0.509E-05	0.112E-03	0.641E-05	0.121E-03	0.580E-05
3p(4)S	50000.	0.906E-03	0.635E-05	0.123E-03	0.834E-05	0.132E-03	0.740E-05
°F(-)~	100000.	0.799E-03	0.367E-05	0.137E-03	0.113E-04	0.142E-03	0.931E-05
PERTURBER DI	ENSITY = 1.1	$E+16 \text{ cm}^{-3}$					
No II	5000	0.317 ± 01	0.405F 04	0.503E.03	0 337F 04	0.842E.03	0 335F 04
3507 0 Å	10000	0.317E-01 0.230E 01	-0.495E-04	0.595E-05	-0.557E-04	0.042E-03 0.124E 02	-0.555E-04
$C = 0.25 E \pm 20$	20000	0.250E-01	-0.105E-05	0.101E-02 0.140E 02	-0.084E-04	0.124E-02 0.154E-02	-0.003E-04
C = 0.35 E + 20	20000.	0.108E-01	-0.192E-03	0.140E-02 0.154E-02	-0.120E-03	0.134E-02 0.166E 02	-0.111E-03
$3S(2)\Gamma - 2m(2)S$	50000.	0.144 ± 01 0.196 ± 01	-0.177E-03	0.134E-02	-0.100E-03	0.100E-02	-0.155E-05
3p(2)5	100000	0.120E-01 0.119E-01	-0.220E-03	0.109E-02	-0.198E-03	0.101E-02	-0.172E-03
	100000.	0.112E-01	-0.197E-05	0.188E-02	-0.249E-05	0.195E-02	-0.208E-05
Ne II	5000.	0.346E-01	-0.175E-04	0.499E-03	-0.873E-04	0.725E-03	-0.862E-04
3725.1 Å	10000.	0.250E-01	-0.389E-03	0.893E-03	-0.171E-03	0.110E-02	-0.160E-03
C = 0.37E + 20	20000.	0.181E-01	-0.491E-03	0.127E-02	-0.280E-03	0.143E-02	-0.244E-03
3s(4)P-	30000.	0.153E-01	-0.423E-03	0.144E-02	-0.338E-03	0.155E-02	-0.297E-03
3p(4)P	50000.	0.131E-01	-0.540E-03	0.158E-02	-0.425E-03	0.169E-02	-0.352E-03
1()	100000.	0.113E-01	-0.456E-03	0.178E-02	-0.511E-03	0.184E-02	-0.424E-03
Ne II	5000.	$0.284 \text{E}{-}01$	-0.399E-04	$0.460 \text{E}{-}03$	-0.337E-04	$0.662 \text{E}{-}03$	-0.335E-04
3343.3 Å	10000	0.206E-01	-0.145E-03	0.803E-03	-0.682E-04	0.991E-03	-0.660E-04
C=0.30E+20	20000	0.149E-01	-0.191E-03	0.113E-02	-0.119E-03	0.126E-02	-0.110E-03
3s(4)P-	30000	$0.127E_{-01}$	-0 174E-03	$0.126F_{-02}$	-0.153E-03	0.126E-02	-0 132E-03
3n(4)D	50000	0.127E-01 0.108E-01	-0.114E-00	0.120E-02 0.138E-02	-0.100E-00	0.130E-02 0.148E-02	-0.162E-03
oP(I)D	100000.	0.947E-02	-0.189E-03	0.154 E-02	-0.243E-03	0.161E-02	-0.202E-03
Ne II	5000	በ 233ፑ_በ1	-0.270F-04	በ 433ፑ_በን	0 124F-04	0 615F-03	0 194F-04
2988 3 Å	10000	0.269E-01	$0.274E_{-0.4}$	0.734F_03	$0.257E_{-0.4}$	0.906E-03	0.253E_04
$C = 0.24E \pm 20$	20000	$0.109 E_{-01}$	$0.546E_{-0.4}$	0.104E-00	0.2010-04 0.470E-04	0.000E-00	0.446E_04
$3e(4)P_{-}$	20000.	0.125E-01 0.105E-01	0.040E-04	0.102E-02 0.112E-02	0.419E-04 0.640E-04	0.112E-02 0.191E-09	0.440E-04
3p(4)S	50000	0.906E-02	0.635E-04	0.123E-02	0.834E-04	0.121E-02	0 740E-04
OP(I)O	100000	0.500E-02	0.367E-04	0.125E-02	0.113E-03	0.142E-02	0.931E_04
	T00000.	0.10000-04	0.0011-04	0.1011-04	0.11017-00	0.17410-04	0.00110-04

Table 1. (continued)							
PERTURBERS ARE:		ELEC	TRONS	PRO	TONS	IONIZED	HELIUM
TRANSITION	T(K)	WIDTH (Å)) SHIFT (Å)	WIDTH (Å)	SHIFT (Å)	WIDTH (Å)) SHIFT (Å)
		9				. ,	
PERTURBER DI	ENSITY = 1.1	$E+17 \text{ cm}^{-3}$					
No II	5000	0.351	0 113E 02	0.608F 02	0.641E.03	0.865F 02	0.634F.03
Ne Π 371/ 1 Δ	10000	0.351	-0.113E-02	0.008E-02 0.106E-01	-0.041E-03	0.805E-02	-0.034E-03
C=0.37E+21	20000	0.186	-0.394E-02	0.149E-01	-0.236E-02	0.165E-01	-0.207E-02
3s(2)P-	30000.	0.159	-0.379E-02	0.165E-01	-0.286E-02	0.178E-01	-0.253E-02
3p(2)D	50000.	0.138	-0.455E-02	0.181E-01	-0.368E-02	0.193E-01	-0.307E-02
1()	100000.	0.122	-0.381E-02	0.202 E-01	-0.444E-02	0.209E-01	-0.371E-02
Ne II	5000.	0.295	-0.107E-02	0.565 E-02	0.112E-04	$0.795 \text{E}{-}02$	0.112E-04
3342.7 A	10000.	0.214	-0.583E-03	0.959E-02	0.251E-04	0.118E-01	0.251E-04
C=0.30E+21	20000.	0.157	-0.473E-03	0.134E-01	0.527E-04	0.146E-01	0.524E-04
3s(2)P-	30000.	0.135	-0.323E-03	0.146E-01	0.784E-04	0.158E-01	0.768E-04
3p(2)P	100000	0.116	-0.302E-03	0.100E-01 0.178E 01	0.124E-05 0.202E 02	0.171E-01 0.184E 01	0.117E-03
	100000.	0.105	-0.595E-05	0.178E-01	0.202E-03	0.164E-01	0.170E-03
Ne II	5000.	0.346	0.264E-04	0.492E-02	-0.774E-03	0.711E-02	-0.764E-03
3725.1 Å	10000.	0.250	-0.365E-02	0.890E-02	-0.162E-02	0.110E-01	-0.151E-02
C = 0.37E + 21	20000.	0.181	-0.480E-02	0.127E-01	-0.276E-02	0.143E-01	-0.240E-02
3s(4)P-	30000.	0.153	-0.432E-02	0.144E-01	-0.335E-02	0.155E-01	-0.294E-02
3p(4)P	50000.	0.131	-0.543E-02	0.158E-01	-0.424E-02	0.169E-01	-0.351E-02
	100000.	0.113	-0.455E-02	0.178E-01	-0.511E-02	0.184E-01	-0.424E-02
Ne II	5000.	0.284	-0.351E-03	0.453E-02	-0.299E-03	0.649E-02	-0.298E-03
3343.3 A	10000.	0.206	-0.136E-02	0.800E-02	-0.648E-03	0.986E-02	-0.626E-03
C=0.30E+21	20000.	0.149	-0.187E-02	0.113E-01	-0.117E-02	0.126E-01	-0.108E-02
38(4)P - 2p(4)D	50000.	0.127	-0.178E-02	0.120E-01	-0.152E-02	0.130E-01	-0.151E-02
3p(4)D	100000	0.108 0.047F 01	-0.210E-02	0.156E-01 0.154E-01	-0.194E-02	0.146E-01 0.161F-01	-0.108E-02
	100000.	0.34712-01	-0.1891-02	0.1541-01	-0.24512-02	0.10112-01	-0.20212-02
Ne II	5000.	0.233	-0.391E-03	0.426E-02	0.110E-03	0.602 E-02	0.110E-03
2988.3 Å	10000.	0.169	0.211E-03	0.731E-02	0.244E-03	0.901E-02	0.240E-03
C=0.24E+21	20000.	0.123	0.517E-03	0.102E-01	0.474E-03	0.112E-01	0.440 E-03
3s(4)P-	30000.	0.105	0.493E-03	0.112E-01	0.636E-03	0.121E-01	0.575E-03
3p(4)S	50000.	0.906E-01	0.652E-03	0.123E-01	0.833E-03	0.132E-01	0.739E-03
	100000.	0.799E-01	0.366E-03	0.137 E-01	0.113E-02	0.142E-01	0.931E-03
N. II	-	0.455	0.100	0.000 00	0.1000 01		0.00417.00
Ne II	5000.	0.455	0.190	0.828E-02	0.106E-01	0.872E-02	0.884E-02
2785.2 A	10000.	0.317	0.147	0.148E-01	0.166E-01	0.150E-01	0.139E-01
C = 0.04 L + 20	20000.	0.232	0.115	0.220E-01	0.222E-01	0.199E-01	0.165E-01
3p(4)r - As(4)P	50000.	0.209	0.101 0.846E-01	0.200E-01 0.306E-01	0.246E-01 0.287E-01	0.225E-01 0.264E-01	0.204E-01 0.236E_01
+5(+)1	100000	0.132	0.658E-01	0.369E-01	0.335E-01	0.204E-01	0.250E-01
	100000.	0.110	0.0001 01	0.0001 01	0.0001 01	0.01011 01	0.2101 01
Ne II	5000.	0.539	0.222	0.101E-01	0.125E-01	0.107E-01	0.105 E-01
3045.3 Å	10000.	0.376	0.171	0.179E-01	0.196E-01	0.182E-01	0.164E-01
C=0.77E+20	20000.	0.276	0.129	0.268E-01	0.263E-01	0.239E-01	0.216E-01
3p(4)D-	30000.	0.250	0.117	0.311E-01	0.293E-01	0.272E-01	0.242E-01
4s(4)P	50000.	0.230	0.968E-01	0.366E-01	0.339E-01	0.319E-01	0.279E-01
	100000.	0.213	0.761E-01	0.438E-01	0.396E-01	0.376E-01	0.329E-01
PERTURBER DI	ENSITY = 1.1	$E+18 \text{ cm}^{-3}$					
		0.00077.01	0.4057.51				
Ne II	5000.	0.292E-01	0.108E-01	0.478E-04	0.182E-03	0.684E-04	0.171E-03
446.6 A	10000.	0.206E-01	0.833E-02	0.211E-03	0.460E-03	0.250E-03	0.416E-03
U = 0.30 E + 20 2 m (5) (2) P	20000.	0.142E-01	0.049E-02	0.520E-03	0.700E-03	0.509E-03	0.058E-03
2p(0)(2)r - 3s(2)P	50000.	0.110E-01	0.041E-02 0.464E-02	0.754E-03 0.106F_02	0.907E-03 0.116F_09	0.730E-03 0.930F-03	0.007E-03
05(2)1	10000	0.544E-02 0.768E_02	0.404E-02	0.100E-02	0.110E-02	0.350E-05 0 119E-09	0.502E-05 0.118E_09
	100000.	0.1001-02	0.01112-02	0.1401-02	0.14217-02	0.1131-02	0.11012-02
Ne II	5000.	3.51	-0.865E-02	0.506E-01	-0.422E-02	0.674E-01	-0.415E-02
3714.1 Å	10000.	2.54	-0.276E-01	0.103	-0.118E-01	0.124	-0.110E-01
C=0.37E+22	20000.	1.86	-0.382E-01	0.147	-0.220E-01	0.162	-0.191E-01
3s(2)P-	30000.	1.59	-0.358E-01	0.164	-0.275E-01	0.177	-0.242E-01
3p(2)D	50000.	1.38	-0.446E-01	0.181	-0.361E-01	0.193	-0.301E-01
	100000.	1.22	-0.372E-01	0.202	-0.442E-01	0.209	-0.370E-01

Table 1. (continued)							
PERTURBERS ARE:		ELEC	TRONS	PRO	FONS	IONIZED	HELIUM
TRANSITION	T(K)	WIDTH (A)) SHIFT (A)	WIDTH (A)	SHIFT (A)	WIDTH (A)) SHIFT (A)
No II	5000	2.05	0.1065-01	0.467 - 01	0 749 - 04	*0.6190 01	*0 7495 04
Ne Π 3342.7 Å	10000	2.95	-0.100E-01	0.407 ± -01 0.928 ± -01	0.742E-04 0.221E-03	*0.012E-01 *0.112	*0.742E-04 *0.220E_03
C=0.30E+22	20000	1.14	-0.555E-02	0.3201-01	0.221E-03	0.144	0.220E-03
3s(2)P-	30000	1.37	-0.452E-02	0.152	0.498E-03	$0.144 \\ 0.157$	0.435E-03
3p(2)P	50000	1.00	-0.360E-02	0.160	0.123E-02	0.171	0.116E-02
op(2)1	100000.	1.05	-0.599E-02	0.178	0.201E-02	0.184	0.176E-02
Ne II	10000.	2.30	-0.139E-01	0.970E-01	-0.568E-02	*0.117	-0.547E-02
3507.9 Å	20000.	1.68	-0.184E-01	0.139	-0.111E-01	0.151	-0.102E-01
C = 0.35E + 22	30000.	1.44	-0.172E-01	0.153	-0.149E-01	0.165	-0.128E-01
3s(2)P-	50000.	1.26	-0.215E-01	0.169	-0.195E-01	0.180	-0.169E-01
3p(2)S	100000.	1.12	-0.194E-01	0.188	-0.248E-01	0.195	-0.207 E-01
	F 000	0.47	0.449E.00	0 4185 01	0 5005 00	0 5040 01	0.400E.00
N. II	5000.	3.47	0.443E-02	0.413E-01	-0.509E-02	0.564E-01	-0.498E-02
Ne II 2725 1 Å	10000.	2.50	-0.349E-01	0.805E-01	-0.140E-01	0.105	-0.130E-01
3720.1 A C = 0.27E + 22	20000.	1.01	-0.405E-01	0.120	-0.200E-01	0.141	-0.220E-01
C=0.37E+22	50000.	1.00	-0.415E-01	0.145	-0.521E-01	0.134	-0.260E-01
3s(4)r - 3s(4)P	100000	1.01	-0.528E-01	0.138	-0.417E-01	0.108	-0.344E-01
3b(4)1	100000.	1.15	-0.44512-01	0.178	-0.510E-01	0.184	-0.42512-01
	5000.	2.84	-0.181E-02	0.378E-01	-0.197E-02	0.509E-01	-0.196E-02
Ne II	10000.	2.06	-0.130E-01	0.776E-01	-0.566E-02	0.941E-01	-0.543E-02
3343.3 Å	20000.	1.49	-0.183E-01	0.112	-0.110E-01	0.124	-0.101E-01
C = 0.30E + 22	30000.	1.27	-0.169E-01	0.126	-0.146E-01	0.135	-0.126E-01
3s(4)P-	50000.	1.08	-0.211E-01	0.138	-0.191E-01	0.148	-0.165E-01
3p(4)D	100000.	0.947	-0.185E-01	0.154	-0.242E-01	0.161	-0.201E-01
	5000.	2.33	-0.400E-02	0.353E-01	0.728E-03	*0.466E-01	*0.727E-03
Ne II	10000.	1.69	$0.200 \text{E}{-}02$	$0.707 \text{E}{-}01$	$0.214 \text{E}{-}02$	*0.857E-01	*0.210E-02
2988.3 A	20000.	1.23	0.491E-02	0.101	0.446E-02	0.110	0.412 E-02
C=0.24E+22	30000.	1.05	0.457E-02	0.112	0.616E-02	0.120	0.556E-02
3s(4)P-	50000.	0.906	0.636E-02	0.123	0.822E-02	0.131	0.728E-02
3p(4)S	100000.	0.799	0.348E-02	0.137	0.113E-01	0.142	0.929 E-02
	5000	*1 55	*1 00	*0.7590.01	*0 5495 01	*0 729F 01	*0.267E 01
No II	10000	3.17	1.62	*0.152E-01	*0.545E-01	*0.132E-01	*0.061E-01
2785 2 Å	20000	0.17 9.39	1.42	*0.223	*0.183	*0.140	*0 144
$C = 0.64E \pm 21$	30000	2.02	0.980	*0.225	*0.221	*0.227	*0.178
3p(4)P-	50000.	1.92	0.824	*0.307	*0.273	*0.264	*0.222
4s(4)P	100000.	1.76	0.642	0.369	0.332	0.319	0.275
	5000.	*5.39	*2.13	*0.907E-01	*0.644E-01	*0.885E-01	*0.437E-01
Ne II	10000.	3.76	1.65	*0.177	*0.147	*0.176	*0.114
3045.3 Å	20000.	2.76	1.25	*0.268	*0.217	*0.236	*0.170
C=0.77E+21	30000.	2.50	1.14	*0.310	*0.261	*0.273	*0.212
3p(4)D-	50000.	2.30	0.942	*0.367	*0.323	*0.319	*0.262
4s(4)P	100000.	2.13	0.742	0.438	0.392	0.376	0.326
	5000	*6 69	*0 50	*0 11 <i>C</i>	*0 20017 01	*0 119	*0 F46E 01
No II	10000	1.68	1.00	*0.110	*0.000E-01	*0.115	*0.149
Ne Π 3/1/ 8 Å	20000	4.00 3.45	1.99	*0.337	*0.182	*0.225	*0.142
$C = 0.07E \pm 21$	20000.	3.40	1.30	*0.301	*0.325	*0.342	*0.262
S = 0.57 E + 21 3p(4)S-	50000.	2 91	1.57	*0.462	*0.401	*0.404	*0.328
4s(4)P	100000.	2.71	0.888	0.551	0.485	*0.467	*0.401
		-3	0.000	01001	01100	0.101	0.101
PERTURBER D	ENSITY = 1.1	E+19 cm					
NeII	5000.	*0.292	*0.102	*0.368E-03	*0.438E-03	*0.478E-03	*0.338E-03
446.6 A	10000.	0.206	0.799E-01	0.204E-02	0.248E-02	*0.237E-02	*0.205E-02
C=0.56E+21	20000.	0.142	0.627E-01	0.519E-02	0.582E-02	*0.506E-02	*0.481E-02
2p(5)(2)P-	30000.	0.115	0.524E-01	0.751E-02	0.801E-02	*0.726E-02	*0.640E-02
3S(2)P	50000.	0.944E-01	0.450E-01	0.106E-01	0.101E-01	"U.926E-02	*0.812E-02
	100000.	0.709E-01	0.307E-01	0.140E-01	0.130E-01	0.118E-01	0.112E-01
Ne II	5000.						
3343.3 Å	10000.						
C = 0.30E + 23	20000.	14.9	-0.159	*1.04	-0.915E-01		
3s(4)P-	30000.	12.7	-0.151	*1.19	-0.129		
3p(4)D	50000.	10.8	-0.197	*1.35	-0.175	*1.43	-0.150
- > /	100000.	9.47	-0.175	*1.54	-0.236	*1.59	-0.195

PERTURBERS ARE:		ΓRONS	PROTONS		IONIZED HELIUM		
T(K)	WIDTH (Å)	SHIFT (Å)	WIDTH (Å)	SHIFT (Å)	WIDTH (Å)	SHIFT (Å)	
5000.							
10000.							
20000.	12.3	0.401E-01	*0.930	*0.379E-01			
30000.	10.5	0.379E-01	*1.06	*0.553E-01			
50000.	9.06	0.579E-01	*1.20	*0.766E-01			
100000.	7.99	0.311E-01	*1.36	*0.110	*1.41	*0.906E-01	
ENSITY = 1.2	$E+20 \text{ cm}^{-3}$						
5000.							
10000.							
20000.							
30000.							
50000.	0.944	0.406					
100000.	0.768	0.337	*0.139	*0.104			
	T(K) 5000. 10000. 20000. 30000. 50000. 100000. 20000. 20000. 30000. 30000. 50000. 100000. 20000. 30000. 50000. 100000. 20000. 30000. 50000. 100000. 20000. 30000. 50000. 100000. 20000. 30000. 50000. 100000. 20000. 30000. 50000. 100000. 200000. 20000. 20000. 20000. 20000. 200000. 20000. 200000.	ELEC' T(K) WIDTH (Å) 5000. 10000. 20000. 12.3 30000. 10.5 50000. 9.06 100000. 7.99 VENSITY = $1.E+20 \text{ cm}^{-3}$ 5000. 10000. 20000. 30000. 50000. 0.944 100000. 0.768	$\begin{array}{c} \text{ELECTRONS} \\ \text{T(K)} & \text{WIDTH (Å) SHIFT (Å)} \\ \\ \hline 5000. \\ 10000. \\ 20000. & 12.3 & 0.401\text{E-01} \\ 30000. & 10.5 & 0.379\text{E-01} \\ 50000. & 9.06 & 0.579\text{E-01} \\ 100000. & 7.99 & 0.311\text{E-01} \\ \end{array}$	$\begin{array}{cccccc} & & & & & & & \\ ELECTRONS & PROT \\ T(K) & WIDTH (Å) & SHIFT (Å) & WIDTH (Å) \\ 5000. & & & & \\ 10000. & & & & \\ 20000. & 12.3 & 0.401E-01 & *0.930 \\ 30000. & 10.5 & 0.379E-01 & *1.06 \\ 50000. & 9.06 & 0.579E-01 & *1.20 \\ 100000. & 7.99 & 0.311E-01 & *1.36 \\ \end{array}$	$\begin{array}{cccccccc} & & & & & & & & \\ T(K) & & & & & & & & & & & \\ WIDTH (Å) & SHIFT (Å) & & & & & & & & \\ 10000. & & & & & & & \\ 20000. & 12.3 & 0.401E-01 & *0.930 & *0.379E-01 \\ 30000. & 10.5 & 0.379E-01 & *1.06 & *0.553E-01 \\ 50000. & 9.06 & 0.579E-01 & *1.20 & *0.766E-01 \\ 100000. & 7.99 & 0.311E-01 & *1.36 & *0.110 \\ \end{array}$	$\begin{array}{ccccccccc} & & & & & & & & & & & & & & &$	

Table 2. This Table shows Mg II-, Si II-, and Fe II-impact broadening parameters for Ne II for perturber densities 10^{17} cm⁻³ - 10^{19} cm⁻³ and temperatures from 5,000 up to 100,000 K. Stark broadening parameters for densities lower than for tabulated values, are linear with perturber density. Transitions and averaged wavelengths for the multiplet (in Å) are also given in the Table. By dividing C by the corresponding full width at half maximum (Dimitrijević, Sahal-Bréchot and Bommier 1991), we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber density (the condition for the validity of the impact approximation lies between 0.1 and 0.5.

PERTURBER D	ENSITY = 1.1	$E+17 \text{ cm}^{-3}$					
PERTURBERS ARE:	$T(\mathbf{K})$	IONIZED M	AGNESIUM	IONIZED S	SILICON	IONIZED	IRON
INANSITION	$\mathbf{I}(\mathbf{K})$	WIDTII (A)	SIIIF I (A)	WIDTII (A)	SIIIF I (A)	WIDTII (A)	SIIIF I (A)
Ne II	5000.	0.942E-05	0.254E-04	0.953E-05	0.253E-04	0.988E-05	0.249E-04
446.6 Å	10000.	0.276E-04	0.435E-04	0.276E-04	0.431E-04	0.275E-04	0.419E-04
C = 0.56E + 19	20000.	0.498E-04	0.638E-04	0.498E-04	0.633E-04	0.497E-04	0.612E-04
2p(5)(2)P-	30000.	0.646E-04	0.713E-04	0.642 E-04	$0.707 \text{E}{-}04$	0.623E-04	0.683E-04
3s(2)P	50000	0.802E-04	0.834E-04	0.799E-04	0.824E-04	0.772E-04	0.795E-04
00(2)1	100000.	0.101E-03	0.991E-04	0.100E-03	0.985E-04	0.971E-04	0.942E-04
Ne II	5000	0 109F-01	-0 620E-03	0 110E-01	-0.619E-03	0 114 F- 01	-0.615E-03
3714 1 Å	10000	0.153E-01	-0.020E-00	$0.154E_{-01}$	-0.019E-00	0.114D-01 0.157E-01	-0.010E-00
C = 0.37 E + 21	20000	$0.177E_{-01}$	0.182F 02	$0.178E_{-01}$	0.181E 02	0.180E 01	0.177E 02
$C = 0.57 E \pm 21$ $3_{c}(2) P$	20000.	0.177E-01 0.180F 01	-0.182E-02	0.178E-01 0.100F 01	-0.181E-02	0.100E-01	-0.177E-02
3s(2)1 - 2m(2)D	50000.	0.109E-01	-0.221E-02	0.190E-01	-0.219E-02	0.192E-01	-0.213E-02
SP(2)D	100000	0.204E-01	-0.237E-02	0.204E-01	-0.200E-02	0.200E-01	-0.246E-02
	100000.	0.215E-01	-0.511E-02	0.214E-01	-0.300E-02	0.215E-01	-0.290E-02
Ne II	5000.	0.987E-02	0.112E-04	0.997E-02	0.112E-04	0.103E-01	0.112 E-04
3342.7 Å	10000.	0.137E-01	0.251E-04	0.138E-01	0.251E-04	0.140E-01	0.251E-04
C = 0.30E + 21	20000.	0.157E-01	0.518E-04	0.158E-01	0.517E-04	0.160E-01	0.515E-04
3s(2)P-	30000.	0.168E-01	0.744E-04	0.169E-01	0.742E-04	0.171E-01	0.736E-04
3p(2)P	50000.	0.180E-01	0.109E-03	0.181E-01	0.108E-03	0.182E-01	0.107E-03
	100000.	0.188E-01	0.157 E-03	0.189E-01	0.156E-03	0.190E-01	0.152E-03
Ne II	5000.	0.103E-01	-0.295E-03	0.104E-01	-0.294E-03	0.108E-01	-0.294E-03
3507.9 Å	10000	0.144E-01	-0.598E-03	0.145E-01	-0.595E-03	0.147E-01	-0.587E-03
C=0.35E+21	20000	0.166E-01	-0.976E-03	0.166E-01	-0.968E-03	0.168E-01	-0.941E-03
3s(2)P-	30000	0.177E-01	-0.119E-02	0.178E-01	-0.118E-02	0.180E-01	-0.115E-02
3n(2)S	50000	0.190E-01	-0.146E-02	$0.191E_{-01}$	-0.144E-02	0.192E-01	-0.139E-02
op(2)5	100000.	0.199E-01	-0.174E-02	0.200E-01	-0.173E-02	0.200E-01	-0.166E-02
No II	5000	0.022E.02	0.742E.02	0.022E.02	0.741E.02	0.0665.02	0.726E.02
Ne II	5000.	0.922E-02	-0.743E-03	0.932E-02	-0.741E-03	0.966E-02	-0.736E-03
3725.1 A	10000.	0.131E-01	-0.141E-02	0.132E-01	-0.140E-02	0.136E-01	-0.138E-02
C=0.37E+21	20000.	0.154E-01	-0.213E-02	0.154E-01	-0.212E-02	0.156E-01	-0.207E-02
3s(4)P-	30000.	0.165E-01	-0.256E-02	0.165E-01	-0.253E-02	0.167E-01	-0.245E-02
3p(4)P	50000.	0.178E-01	-0.296E-02	0.179E-01	-0.294E-02	0.180E-01	-0.284E-02
	100000.	0.188E-01	-0.356E-02	0.189E-01	-0.350E-02	0.189E-01	-0.338E-02
Ne II	5000.	0.828E-02	-0.294E-03	0.836E-02	-0.294E-03	0.866E-02	-0.293E-03
3343.3 Å	10000.	0.117E-01	-0.591E-03	0.118E-01	-0.589E-03	0.120E-01	-0.580E-03
C=0.30E+21	20000.	0.136E-01	-0.955E-03	0.136E-01	-0.947E-03	0.138E-01	-0.921E-03
3s(4)P-	30000.	0.145E-01	-0.117E-02	0.145E-01	-0.116E-02	0.147E-01	-0.113E-02
3p(4)D	50000.	0.156E-01	-0.141E-02	0.157E-01	-0.140E-02	0.158E-01	-0.135E-02
,	100000.	0.164E-01	-0.170E-02	0.164E-01	-0.168E-02	0.165E-01	-0.163E-02
Ne II	5000.	0.753E-02	0.110E-03	0.760E-02	0.110E-03	0.787E-02	0.110E-03
2988.3 Å	10000.	0.105 E-01	0.233E-03	0.106E-01	0.233E-03	0.107E-01	0.231E-03
C=0.24E+21	20000.	0.121E-01	0.411E-03	0.121E-01	0.409E-03	0.123E-01	0.401E-03
3s(4)P-	30000	0.129E-01	0.502E-03	0.130E-01	0.498E-03	0.131E-01	0.486E-03
3p(4)S	50000	0.139E-01	0.646E-03	0.139E-01	0.640E-03	0.140E-01	0.623E-03
~r(*)~	100000.	0.145E-01	0.785E-03	0.145E-01	0.779E-03	0.146E-01	0.750E-03
Ne II	5000	በ ዓ1ንፑ_በን	በ 750ፑ_በን	በ 916ፑ_በን	0 752F_02	በ ዓ10ፑ_በን	በ 723ፑ_ቦን
2785.2 Å	10000	0.312E-02 0.130E_01	0.109E-02 0.119E-01	0.310E-02	0.102E-02 0.110E-01	0.313E-02 0.136E-01	0.125E-02
$C = 0.64E \pm 20$	20000	0.155E-01 0.177E-01	0.112E-01 0.152E-01	0.139E-01 0.176E-01	0.110E-01 0.150E-01	0.130E-01 0.172E-01	0.100E-01
$S = 0.0412 \pm 20$ $3n(4)P_{-}$	20000.	0.17710-01 0.202E-01	0.152E-01 0.170E-01	0.170E-01 0.201E-01	$0.168E_{-01}$	0.172E-01 0.104E-01	0.144D-01 0.169E-01
$A_{e}(A)P$	50000.	0.2021-01	0.107F 01	0.2011-01	0.103E-01	0.1340-01	0.102E-01
1(+)6+	10000	0.252E-01	0.1971-01 0.22/F-01	0.252E-01 0.261E_01	0.195E-01 0.226E_01	0.210E-01 0.265E-01	0.100E-01
	T00000.	0.40010-01	0.44±1701	0.20112-01	0.44012-01	0.4001-01	0.01010-01

Table 2. (continued) PERTURBERS ARE: TRANSITION	T(K)	IONIZED M WIDTH (Å)	AGNESIUM SHIFT (Å)	IONIZED S WIDTH (Å)	SILICON SHIFT (Å)	IONIZED WIDTH (Å)	IRON SHIFT (Å)
Ne II 3045.3 Å C=0.77E+20 3p(4)D- 4s(4)P	5000. 10000. 20000. 30000. 50000. 100000	0.113E-01 0.170E-01 0.213E-01 0.245E-01 0.279E-01 0.314E-01	0.898E-02 0.132E-01 0.179E-01 0.202E-01 0.232E-01 0.265E-01	0.113E-01 0.169E-01 0.214E-01 0.243E-01 0.279E-01 0.308E-01	0.889E-02 0.131E-01 0.178E-01 0.199E-01 0.230E-01 0.266E-01	0.114E-01 0.165E-01 0.209E-01 0.235E-01 0.264E-01 0.318E-01	0.856E-02 0.125E-01 0.171E-01 0.192E-01 0.219E-01 0.254E-01
Ne II 3414.8 Å C=0.97E+20 3p(4)S- 4s(4)P	5000. 10000. 20000. 30000. 50000. 100000.	0.149E-01 0.218E-01 0.275E-01 0.312E-01 0.353E-01 0.399E-01	0.111E-01 0.164E-01 0.222E-01 0.251E-01 0.288E-01 0.327E-01	0.149E-01 0.218E-01 0.273E-01 0.311E-01 0.352E-01 0.390E-01	0.110E-01 0.162E-01 0.220E-01 0.247E-01 0.285E-01 0.326E-01	0.151E-01 0.214E-01 0.270E-01 0.300E-01 0.335E-01 0.402E-01	0.106E-01 0.155E-01 0.212E-01 0.238E-01 0.270E-01 0.316E-01
PERTURBER DI	ENSITY = 1.1	$E+18 \text{ cm}^{-3}$					
Ne II 446.6 Å C= $0.56E+20$ 2p(5)(2)P- 3s(2)P	5000. 10000. 20000. 30000. 50000. 100000.	0.924E-04 0.276E-03 0.500E-03 0.644E-03 0.802E-03 0.101E-02	$\begin{array}{c} 0.155 \text{E-}03 \\ 0.355 \text{E-}03 \\ 0.564 \text{E-}03 \\ 0.661 \text{E-}03 \\ 0.807 \text{E-}03 \\ 0.985 \text{E-}03 \end{array}$	0.935E-04 0.276E-03 0.498E-03 0.642E-03 0.799E-03 0.100E-02	$\begin{array}{c} 0.154\text{E-03} \\ 0.351\text{E-03} \\ 0.558\text{E-03} \\ 0.657\text{E-03} \\ 0.797\text{E-03} \\ 0.979\text{E-03} \end{array}$	$\begin{array}{c} 0.967 {\rm E}{\rm -}04 \\ 0.274 {\rm E}{\rm -}03 \\ 0.498 {\rm E}{\rm -}03 \\ 0.620 {\rm E}{\rm -}03 \\ 0.772 {\rm E}{\rm -}03 \\ 0.971 {\rm E}{\rm -}03 \end{array}$	0.150E-03 0.338E-03 0.539E-03 0.634E-03 0.767E-03 0.937E-03
Ne II 3714.1 Å C=0.37E+22 3s(2)P- 3p(2)D	5000. 10000. 20000. 30000. 50000. 100000.	*0.753E-01 *0.142 *0.172 *0.187 *0.203 0.214	-0.401E-02 -0.101E-01 -0.166E-01 -0.210E-01 -0.251E-01 -0.309E-01	*0.753E-01 *0.143 *0.173 *0.187 *0.203 *0.214	-0.400E-02 -0.100E-01 -0.165E-01 -0.208E-01 -0.249E-01 -0.304E-01	*0.751E-01 *0.144 *0.174 *0.189 *0.205 *0.215	-0.396E-02 -0.987E-02 -0.161E-01 -0.202E-01 -0.241E-01 -0.295E-01
Ne II 3342.7 Å C=0.30E+22 3s(2)P- 3p(2)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.663E-01 *0.127 *0.153 *0.166 *0.180 *0.188	*0.742E-04 *0.220E-03 *0.489E-03 *0.723E-03 *0.108E-02 *0.156E-02	*0.663E-01 *0.127 *0.153 *0.167 *0.180 *0.189	*0.742E-04 *0.220E-03 *0.488E-03 *0.722E-03 *0.107E-02 *0.155E-02	0.660E-01 0.128 0.154 0.168 0.181 0.189	*0.742E-04 *0.220E-03 *0.486E-03 *0.716E-03 *0.106E-02 *0.152E-02
Ne II 3507.9 Å C=0.35E+22 3s(2)P- 3p(2)S	5000. 10000. 20000. 30000. 50000. 100000.	*0.702E-01 *0.133 *0.161 *0.175 *0.190 *0.199	-0.193E-02 -0.515E-02 -0.900E-02 -0.114E-01 -0.143E-01 -0.174E-01	*0.702E-01 *0.134 *0.161 *0.175 *0.190 *0.200	-0.193E-02 -0.513E-02 -0.892E-02 -0.113E-01 -0.141E-01 -0.172E-01	*0.700E-01 *0.135 *0.163 *0.177 *0.191 *0.200	-0.192E-02 -0.504E-02 -0.864E-02 -0.110E-01 -0.136E-01 -0.166E-01
Ne II 3725.1 Å C=0.37E+22 3s(4)P- 3p(4)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.660E-01 *0.123 *0.150 *0.163 *0.177 0.188	-0.477E-02 -0.119E-01 -0.194E-01 -0.242E-01 -0.289E-01 -0.355E-01	*0.661E-01 *0.123 *0.151 *0.163 *0.178 0.189	-0.476E-02 -0.118E-01 -0.192E-01 -0.239E-01 -0.287E-01 -0.349E-01	*0.663E-01 *0.126 *0.152 *0.165 *0.179 0.189	-0.470E-02 -0.116E-01 -0.187E-01 -0.231E-01 -0.276E-01 -0.337E-01
Ne II 3343.3 Å C=0.30E+22 3s(4)P- 3p(4)D	5000. 10000. 20000. 30000. 50000. 100000.	*0.579E-01 *0.109 *0.132 *0.143 *0.156 0.164	-0.192E-02 -0.509E-02 -0.878E-02 -0.111E-01 -0.138E-01 -0.170E-01	*0.579E-01 *0.109 *0.132 *0.144 *0.156 0.164	-0.192E-02 -0.506E-02 -0.870E-02 -0.110E-01 -0.137E-01 -0.167E-01	*0.579E-01 *0.111 *0.134 *0.145 *0.157 0.165	-0.191E-02 -0.498E-02 -0.844E-02 -0.107E-01 -0.132E-01 -0.162E-01
Ne II 2988.3 Å C=0.24E+22 3s(4)P- 3p(4)S	5000. 10000. 20000. 30000. 50000. 100000.	*0.512E-01 *0.973E-01 *0.117 *0.127 *0.138 *0.145	*0.723E-03 *0.203E-02 *0.383E-02 *0.482E-02 *0.635E-02 *0.783E-02	*0.511E-01 *0.976E-01 *0.118 *0.128 *0.138 *0.138	*0.723E-03 *0.202E-02 *0.381E-02 *0.478E-02 *0.630E-02 *0.777E-02	*0.510E-01 *0.982E-01 *0.119 *0.129 *0.139 *0.139	*0.721E-03 *0.201E-02 *0.373E-02 *0.466E-02 *0.613E-02 *0.748E-02
Ne II 2785.2 Å C=0.64E+21 3p(4)P- 4s(4)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.232 *0.259	*0.182 *0.222	*0.231 *0.261	*0.178 *0.224	*0.218 *0.265	*0.170 *0.210

Table 2. (continued)							
PERTURBERS ARE: TRANSITION	T(K)	IONIZED M WIDTH (Å)	AGNESIUM SHIFT (Å)	IONIZED S WIDTH (Å)	SILICON SHIFT (Å)	IONIZED WIDTH (Å)	IRON SHIFT (Å)
Ne II 3045.3 Å C=0.77E+21 3p(4)D- 4s(4)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.279 *0.314	*0.215 *0.262	*0.279 *0.308	*0.212 *0.262	*0.317	*0.251
Ne II 3414.8 Å C=0.97E+21 3p(4)S- 4s(4)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.353 *0.399	*0.266 *0.323	*0.351 *0.390	*0.264 *0.322	*0.402	*0.312
PERTURBER DE	NSITY = 1.E	$+19 \text{ cm}^{-3}$					
Ne II 446.6 Å C= $0.56E+21$ 2p(5)(2)P- 3s(2)P	5000. 10000. 20000. 30000. 50000. 100000.	*0.554E-03 *0.252E-02 *0.492E-02 *0.645E-02 *0.801E-02 *0.101E-01	*0.196E-03 *0.144E-02 *0.387E-02 *0.495E-02 *0.656E-02 *0.925E-02	*0.553E-03 *0.251E-02 *0.492E-02 *0.641E-02 *0.793E-02 *0.101E-01	*0.186E-03 *0.140E-02 *0.382E-02 *0.488E-02 *0.647E-02 *0.916E-02	*0.540E-03 *0.247E-02 *0.490E-02 *0.620E-02 *0.770E-02 *0.972E-02	*0.151E-03 *0.128E-02 *0.361E-02 *0.466E-02 *0.615E-02 *0.877E-02

Table 3. This Table shows electron-, proton-, and He II-impact broadening parameters for Ne III for perturber densities 10^{18} cm⁻³ - 10^{21} cm⁻³ and temperatures from 20,000 up to 500,000 K. Stark broadening parameters for densities lower than for tabulated values, are linear with perturber density. Transitions and averaged wavelengths for the multiplet (in Å) are also given in the Table. By dividing C by the corresponding full width at half maximum (Dimitrijević, Sahal-Bréchot and Bommier 1991), we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber density (the condition for the validity of the impact approximation lies between 0.1 and 0.5.

PERTURBER D	ENSITY = 1.1	$E+18 \text{ cm}^{-3}$					
PERTURBERS ARE:		ELEC	FRONS .	PROT	ONS	IONIZED	HELIUM
TRANSITION	T(K)	WIDTH (A)	SHIFT (A)	WIDTH (A)	SHIFT (A)	WIDTH (A)	SHIFT (A)
Ne III	20000.	0.916	-0.105E-01	0.171E-01	-0.475E-02	0.240E-01	-0.458E-02
2593.1 Å	50000.	0.594	-0.112E-01	0.326E-01	-0.107E-01	0.394E-01	-0.943E-02
C=0.26E+22	100000	0.450	-0.163E-01	0.436E-01	-0.154E-01	0.464E-01	-0.133E-01
3s(5)S-	200000	0.361	-0.143E-01	0.500E-01	-0.195E-01	0.524E-01	-0.163E-01
3n(5)P	300000	0.324	-0.146E-01	0.539E-01	-0.218E-01	0.555E-01	-0.182E-01
op(0)1	500000.	0.288	-0.137E-01	0.581E-01	-0.250E-01	0.581E-01	-0.204E-01
Ne III	20000.	0.712	-0.717E-03	0.258E-01	0.668E-05	0.333E-01	0.668E-05
2162.6 Å	50000.	0.469	-0.501E-04	0.436E-01	0.186E-04	0.491E-01	0.186E-04
C = 0.17E + 22	100000.	0.360	-0.699E-04	0.517E-01	0.380E-04	0.557E-01	0.379E-04
3p(5)P-	200000.	0.294	0.449E-03	0.582E-01	0.754E-04	0.617E-01	0.739E-04
3d(5)D	300000.	0.268	0.209E-03	0.616E-01	0.109E-03	0.636E-01	0.104E-03
	500000.	0.242	0.233E-03	0.640E-01	0.160E-03	0.656E-01	0.147E-03
Ne III	20000.	0.738E-02	0.563E-03	0.356E-04	0.136E-03	0.483E-04	0.127E-03
313.4 Å	50000.	0.439E-02	0.578E-03	0.169E-03	0.276E-03	0.158E-03	0.241E-03
C = 0.37 E + 20	100000.	0.318E-02	0.608E-03	0.304E-03	0.391E-03	0.289E-03	0.324E-03
2p(4)(3)P-	200000.	0.245E-02	0.582E-03	0.448E-03	0.474E-03	0.385E-03	0.394E-03
$3\hat{s}(3)\hat{S}$	300000.	0.213E-02	0.563E-03	0.519E-03	0.528E-03	0.440E-03	0.436E-03
	500000.	0.182 E- 02	0.526E-03	0.611E-03	0.601E-03	0.526E-03	0.492 E- 03
Ne III	20000.	0.666E-02	0.126E-03	0.394E-03	0.341E-04	*0.410E-03	*0.336E-04
251.3 Å	50000.	0.438E-02	0.209E-03	0.538E-03	0.655E-04	0.547E-03	0.640E-04
C=0.23E+20	100000.	0.334E-02	0.187E-03	0.610E-03	0.914E-04	0.617E-03	0.882E-04
2p(4)(3)P-	200000.	0.270E-02	0.210E-03	0.665E-03	0.111E-03	0.667E-03	$0.107 \text{E}{-}03$
3d(3)D	300000.	0.244E-02	0.199E-03	0.682E-03	0.123E-03	0.683E-03	0.118E-03
	500000.	0.219E-02	0.188E-03	0.700 E- 03	0.140E-03	0.696E-03	0.134E-03
Ne III	20000.	1.06	-0.114E-01	0.218E-01	-0.503E-02	0.302E-01	-0.486E-02
2679.0 Å	50000.	0.688	-0.125E-01	0.404E-01	-0.114E-01	0.484E-01	-0.100E-01
C = 0.27E + 22	100000.	0.525	-0.172E-01	0.524E-01	-0.164E-01	0.561E-01	-0.142E-01
3s(3)S-	200000.	0.424	-0.158E-01	0.598E-01	-0.207E-01	0.630E-01	-0.173E-01
3p(3)P	300000.	0.382	-0.159E-01	0.643E-01	-0.232E-01	0.665E-01	-0.193E-01
. ()	500000.	0.339	-0.152E-01	0.686E-01	-0.265E-01	0.688E-01	-0.217E-01
Ne III	20000.	0.964	-0.156E-02	*0.573E-01	-0.975E-03	*0.588E-01	-0.971E-03
2413.8 Å	50000.	0.636	-0.613E-03	*0.733E-01	-0.224E-02	*0.741E-01	-0.221E-02
C=0.21E+22	100000.	0.491	-0.282E-02	0.822E-01	-0.328E-02	*0.831E-01	-0.320E-02
3p(3)P-	200000.	0.404	-0.111E-02	0.875E-01	-0.421E-02	0.879E-01	-0.407E-02
3d(3)D	300000.	0.368	-0.149E-02	0.895E-01	-0.473E-02	0.898E-01	-0.456E-02
	500000.	0.333	-0.119E-02	0.913E-01	-0.536E-02	0.913E-01	-0.519E-02
PERTURBER D	ENSITY = 1.1	$E+19 \text{ cm}^{-3}$					
Ne III	20000.	9.15	-0.858E-01	0.155	-0.344E-01	*0.210	-0.327E-01
2593.1 Å	50000.	5.94	-0.101	0.320	-0.964E-01	*0.383	-0.837E-01
C = 0.26E + 23	100000.	4.50	-0.157	0.434	-0.147	*0.461	-0.126
3s(5)S-	200000.	3.61	-0.137	0.500	-0.192	0.523	-0.159
3p(5)P	300000.	3.24	-0.142	0.539	-0.218	0.554	-0.181
. ()	500000.	2.88	-0.135	0.581	-0.249	0.580	-0.204
Ne III	20000.	7.12	-0.754E-02	*0.228	*0.489E-04	*0.276	*0.489E-04
2162.6 Å	50000.	4.69	-0.560E-03	0.424	0.171E-03	*0.470	*0.171E-03
C=0.17E+23	100000.	3.60	-0.449E-03	0.514	0.370E-03	*0.551	*0.369E-03
3p(5)P-	200000.	2.94	0.422E-02	0.581	0.749E-03	*0.616	*0.734E-03
3d(5)D	300000.	2.68	0.214E-02	0.616	0.109E-02	*0.635	*0.104E-02
	500000	2.42	0 231E-02	0.640	0.160E-02	*0.656	*0 147E-02

Table 3. (continued)							
PERTURBERS ARE: TRANSITION	T(K)	ELECT WIDTH (Å)	ΓRONS SHIFT (Å)	PROT WIDTH (Å)	CONS SHIFT (Å)	IONIZED WIDTH (Å)	HELIUM SHIFT (Å)
Ne III 313.4 Å C=0.37E+21 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	0.738E-01 0.439E-01 0.318E-01 0.245E-01 0.213E-01 0.182E-01	0.513E-02 0.543E-02 0.588E-02 0.564E-02 0.550E-02 0.519E-02	$\begin{array}{c} 0.353 \pm -03 \\ 0.170 \pm -02 \\ 0.304 \pm -02 \\ 0.447 \pm -02 \\ 0.519 \pm -02 \\ 0.612 \pm -02 \end{array}$	$\begin{array}{c} 0.970 {\rm E}{\rm -}03 \\ 0.244 {\rm E}{\rm -}02 \\ 0.369 {\rm E}{\rm -}02 \\ 0.464 {\rm E}{\rm -}02 \\ 0.526 {\rm E}{\rm -}02 \\ 0.599 {\rm E}{\rm -}02 \end{array}$	$\begin{array}{c} 0.478 { E-03} \\ 0.158 { E-02} \\ 0.289 { E-02} \\ 0.385 { E-02} \\ 0.440 { E-02} \\ 0.526 { E-02} \end{array}$	0.882E-03 0.209E-02 0.303E-02 0.383E-02 0.434E-02 0.491E-02
Ne III 251.3 Å C=0.23E+21 2p(4)(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	0.666E-01 0.438E-01 0.334E-01 0.270E-01 0.244E-01 0.219E-01	0.119E-02 0.200E-02 0.182E-02 0.206E-02 0.195E-02 0.187E-02	*0.600E-02 *0.662E-02 *0.681E-02 *0.700E-02	*0.859E-03 *0.108E-02 *0.122E-02 *0.139E-02	*0.665E-02 *0.682E-02 *0.695E-02	*0.104E-02 *0.118E-02 *0.133E-02
Ne III 2679.0 Å C=0.27E+23 3s(3)S- 3p(3)P	20000. 50000. 100000. 200000. 300000. 500000.	$10.6 \\ 6.88 \\ 5.25 \\ 4.24 \\ 3.82 \\ 3.39$	-0.940E-01 -0.113 -0.166 -0.151 -0.154 -0.149	$\begin{array}{c} 0.197 \\ 0.396 \\ 0.522 \\ 0.598 \\ 0.643 \\ 0.686 \end{array}$	-0.365E-01 -0.102 -0.156 -0.204 -0.231 -0.265	*0.262 *0.469 *0.557 0.629 0.664 0.688	-0.347E-01 -0.889E-01 -0.134 -0.169 -0.192 -0.217
Ne III 2413.8 Å C=0.21E+23 3p(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	9.64 6.36 4.91 4.04 3.68 3.33	-0.121E-01 -0.418E-02 -0.266E-01 -0.973E-02 -0.141E-01 -0.115E-01	*0.894 *0.912	-0.471E-01 -0.535E-01	*0.912	-0.517E-01
PERTURBER DEN	NSITY = 1.E +	-20 cm^{-3}					
Ne III 313.4 Å C=0.37E+22 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	*0.738 0.439 0.318 0.245 0.213 0.182	*0.289E-01 0.431E-01 0.514E-01 0.512E-01 0.506E-01 0.482E-01	*0.277E-02 *0.167E-01 *0.304E-01 *0.449E-01 *0.519E-01 *0.611E-01	*0.263E-02 *0.164E-01 *0.300E-01 *0.415E-01 *0.499E-01 *0.595E-01	*0.337E-02 *0.154E-01 *0.288E-01 *0.387E-01 *0.439E-01 *0.526E-01	*0.180E-02 *0.129E-01 *0.232E-01 *0.336E-01 *0.407E-01 *0.487E-01
Ne III 251.3 Å C=0.23E+22 2p(4)(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	$\begin{array}{c} 0.438 \\ 0.334 \\ 0.270 \\ 0.244 \\ 0.219 \end{array}$	0.170E-01 0.163E-01 0.192E-01 0.184E-01 0.177E-01				
PERTURBER DEN	NSITY = 1.E +	-21 cm^{-3}					
Ne III 313.4 Å C=0.37E+23 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	*3.14 2.43 2.11 1.80	*0.239 0.333 0.361 0.371				
Ne III 251.3 Å C=0.23E+23 2p(4)(3)P-3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	*3.31 *2.69 2.43 2.18	0.946E-01 0.146 0.149 0.148				

Table 4. This Table shows Mg II-, Si II-, and Fe II-impact broadening parameters for Ne III for perturber densities 10^{17} cm⁻³ - 10^{20} cm⁻³ and temperatures from 20,000 up to 500,000 K. Stark broadening parameters for densities lower than for tabulated values, are linear with perturber density. Transitions and averaged wavelengths for the multiplet (in Å) are also given in the Table. By dividing C by the corresponding full width at half maximum (Dimitrijević, Sahal-Bréchot and Bommier 1991), we obtain an estimate for the maximum perturber density for which the line may be treated as isolated and tabulated data may be used. The asterisk identifies cases for which the collision volume multiplied by the perturber density (the condition for the validity of the impact approximation lies between 0.1 and 0.5.

PERTURBER D	ENSITY = 1.1	$E+17 \text{ cm}^{-3}$					
PERTURBERS ARE:		IONIZED M	AGNESIUM	IONIZED S	SILICON	IONIZED	IRON
TRANSITION	T(K)	WIDTH (A)	SHIFT (A)	WIDTH (A)	SHIFT (A)	WIDTH (A)	SHIFT (A)
Ne III	20000	0 305E-02	-0.485E-03	0 308F-02	-0.483E-03	0 320F-02	-0.476E-03
2593 1 Å	50000	0.434E-02	-0.860E-03	0.436E-02	-0.854E-03	0.020E 02 0.441E-02	-0.838E-03
$C = 0.26E \pm 21$	100000	0.493E-02	-0.114E-02	0.494E-02	-0.113E-02	0.500E-02	-0.109E-02
$3s(5)S_{-}$	200000	0.400E-02	-0.114E-02	0.434E-02	-0.116E-02	0.550E-02 0.551E-02	-0.131E-02
3n(5)P	300000	0.540E-02	-0.157E-02	0.541E-02 0.566E-02	-0.151E-02	$0.565E_{-02}$	-0.101E-02
3p(3)1	500000.	0.580E-02	-0.169E-02	0.583E-02	-0.167E-02	0.578E-02	-0.163E-02
Ne III	20000.	0.416E-02	0.738E-06	0.420E-02	0.738E-06	0.435E-02	0.738E-06
2162.6 A	50000.	0.531E-02	0.191E-05	0.533E-02	0.191E-05	0.540E-02	0.191E-05
C=0.17E+21	100000.	0.593E-02	0.380E-05	0.595E-02	0.380E-05	$0.602 \text{E}{-}02$	0.379E-05
3p(5)P-	200000.	0.636E-02	0.716E-05	0.637 ± -02	0.714 ± -05	0.640 ± -02	0.709 E-05
3d(5)D	300000.	$0.652 \text{E}{-}02$	$0.965 \text{E}{-}05$	0.651E-02	$0.962 \text{E}{-}05$	0.654E-02	0.949E-05
	500000.	0.666E-02	0.130E-04	$0.667 \text{E}{-}02$	0.129E-04	$0.667 \text{E}{-}02$	0.126E-04
Ne III	20000	0.549E-05	0.133E-04	0.554E-05	0.132E-04	0.573E-05	0.131E-04
313.4 Å	50000.	0.156E-04	0.222E-04	0.155E-04	0.221E-04	0.156E-04	0.216E-04
C=0.37E+19	100000	0.251E-04	0.277E-04	0.250E-04	0.275E-04	0.246E-04	0.266E-04
2p(4)(3)P-	200000	0.329E-04	0.331E-04	0.326E-04	0.327E-04	0.316E-04	0.316E-04
3s(3)S	300000	0.374E-04	0.365E-04	0.370E-04	0.362E-04	0.366E-04	0.348E-04
00(0)0	500000.	0.444E-04	0.402E-04	0.429E-04	0.398E-04	0.414E-04	0.388E-04
Ne III	20000.	$0.400 \text{E}{-}04$	0.382E-05	0.405E-04	0.381E-05	0.422E-04	0.376E-05
251.3 A	50000.	0.539E-04	0.690E-05	0.541E-04	0.685E-05	0.550E-04	0.669E-05
C=0.23E+19	100000.	0.609E-04	0.937E-05	0.611E-04	$0.927 \text{E}{-}05$	0.618E-04	$0.895 \text{E}{-}05$
2p(4)(3)P-	200000.	0.663E-04	0.112E-04	0.665 E-04	0.111E-04	$0.667 \text{E}{-}04$	0.107 E-04
3d(3)D	300000.	0.683E-04	0.125E-04	0.682E-04	0.123E-04	0.683E-04	0.119E-04
	500000.	0.700 E-04	0.140 E-04	0.700 E-04	0.140 E-04	0.696E-04	0.134 E-04
Ne III	20000.	0.378E-02	-0.514E-03	0.382E-02	-0.512E-03	0.398E-02	-0.505E-03
2679.0 Å	50000.	0.525E-02	-0.912E-03	0.527E-02	-0.907E-03	0.535E-02	-0.889E-03
C=0.27E+21	100000	0.595E-02	-0.121E-02	0.597E-02	-0.120E-02	0.605E-02	-0.116E-02
3s(3)S-	200000	0.654E-02	-0.146E-02	0.657E-02	-0.145E-02	0.659E-02	-0.139E-02
3n(3)P	300000	0.677E-02	-0.162E-02	0.674E-02	-0.160E-02	0.677E-02	-0 154E-02
0p(0)1	500000.	0.696E-02	-0.179E-02	0.696E-02	-0.178E-02	0.691E-02	-0.172E-02
	20000					0.0117.00	0.4007.00
Ne III	20000.	$0.587 \text{E}{-}02$	-0.108E-03	0.593E-02	-0.108E-03	0.611E-02	-0.108E-03
2413.8 A	50000.	0.735 ± 0.02	-0.233E-03	0.738E-02	-0.232E-03	0.747 ± -02	-0.228E-03
C=0.21E+21	100000.	0.820E-02	-0.334E-03	$0.824 \text{E}{-}02$	-0.332E-03	0.832E-02	-0.323E-03
3p(3)P-	200000.	$0.875 \text{E}{-}02$	-0.426E-03	0.876E-02	-0.421E-03	0.879E-02	-0.407E-03
3d(3)D	300000.	0.894E-02	-0.477E-03	$0.895 \text{E}{-}02$	-0.473E-03	0.898E-02	-0.457 E-03
	500000.	$0.909 \text{E}{-}02$	-0.543E-03	0.913E-02	-0.536E-03	0.913E-02	-0.519E-03
PERTURBER D	ENSITY = 1.1	$E + 18 \text{ cm}^{-3}$					
N. 111	20000	0.00000.01	0.4997.00	0.001 E.01	0.4917-00	0.9100.01	0.4045.00
	20000.	0.298E-01	-0.433E-02	0.301E-01	-0.431E-02	0.312E-01	-0.424E-02
2593.1 A	50000.	0.433E-01	-0.822E-02	0.434E-01	-0.817E-02	0.439E-01	-0.800E-02
C=0.26E+22	100000.	0.493E-01	-0.113E-01	0.494E-01	-0.111E-01	0.499E-01	-0.107E-01
3s(5)S-	200000.	0.546E-01	-0.137E-01	0.547E-01	-0.136E-01	0.550E-01	-0.131E-01
3p(5)P	300000.	0.563E-01	-0.152E-01	0.566E-01	-0.151E-01	0.565E-01	-0.145E-01
	500000.	0.580 E-01	-0.169E-01	0.583 E-01	-0.167E-01	0.578E-01	-0.163E-01
Ne III	20000.	*0.403E-01	*0.668E-05	*0.407E-01	*0.668E-05	*0.420E-01	*0.668E-05
2162.6 Å	50000.	*0.527E-01	*0.186E-04	*0.530E-01	*0.186E-04	*0.536E-01	*0.186E-04
C=0.17E+22	100000.	0.592E-01	0.378E-04	0.594E-01	0.378E-04	0.601E-01	0.377 E-04
3p(5)P-	200000.	0.636E-01	0.715E-04	0.637E-01	0.714E-04	0.640E-01	0.708E-04
3d(5)D	300000.	0.652 E-01	0.965E-04	0.651E-01	0.961E-04	0.654E-01	0.949E-04
. /	500000.	0.666E-01	0.130E-03	0.667E-01	0.129E-03	0.667E-01	0.126E-03

Table 4. (continued)							
PERTURBERS ARE: TRANSITION	T(K)	IONIZED M. WIDTH (Å)	AGNESIUM SHIFT (Å)	IONIZED S WIDTH (Å)	SILICON SHIFT (Å)	IONIZED WIDTH (Å)	IRON SHIFT (Å)
Ne III 313.4 Å C=0.37E+20 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	$\begin{array}{c} 0.550\mathrm{E}{-}04\\ 0.155\mathrm{E}{-}03\\ 0.252\mathrm{E}{-}03\\ 0.329\mathrm{E}{-}03\\ 0.374\mathrm{E}{-}03\\ 0.444\mathrm{E}{-}03 \end{array}$	$\begin{array}{c} 0.117 \text{E-03} \\ 0.211 \text{E-03} \\ 0.272 \text{E-03} \\ 0.330 \text{E-03} \\ 0.364 \text{E-03} \\ 0.402 \text{E-03} \end{array}$	$\begin{array}{c} 0.555 \pm -04 \\ 0.155 \pm -03 \\ 0.250 \pm -03 \\ 0.326 \pm -03 \\ 0.370 \pm -03 \\ 0.429 \pm -03 \end{array}$	$\begin{array}{c} 0.117 \text{E-03} \\ 0.210 \text{E-03} \\ 0.270 \text{E-03} \\ 0.326 \text{E-03} \\ 0.361 \text{E-03} \\ 0.398 \text{E-03} \end{array}$	$\begin{array}{c} 0.574\text{E-}04\\ 0.156\text{E-}03\\ 0.246\text{E-}03\\ 0.316\text{E-}03\\ 0.366\text{E-}03\\ 0.414\text{E-}03 \end{array}$	0.115E-03 0.204E-03 0.261E-03 0.315E-03 0.347E-03 0.388E-03
Ne III 251.3 Å C=0.23E+20 2p(4)(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	$\begin{array}{c} 0.389\text{E-03} \\ 0.536\text{E-03} \\ 0.608\text{E-03} \\ 0.662\text{E-03} \\ 0.682\text{E-03} \\ 0.700\text{E-03} \end{array}$	$\begin{array}{c} 0.342 \text{E-}04 \\ 0.660 \text{E-}04 \\ 0.924 \text{E-}04 \\ 0.112 \text{E-}03 \\ 0.125 \text{E-}03 \\ 0.140 \text{E-}03 \end{array}$	$\begin{array}{c} 0.394\text{E-03} \\ 0.538\text{E-03} \\ 0.610\text{E-03} \\ 0.665\text{E-03} \\ 0.682\text{E-03} \\ 0.700\text{E-03} \end{array}$	$\begin{array}{c} 0.341 \text{E-}04 \\ 0.655 \text{E-}04 \\ 0.914 \text{E-}04 \\ 0.111 \text{E-}03 \\ 0.123 \text{E-}03 \\ 0.140 \text{E-}03 \end{array}$	*0.410E-03 0.547E-03 0.617E-03 0.667E-03 0.683E-03 0.696E-03	*0.336E-04 0.640E-04 0.882E-04 0.107E-03 0.118E-03 0.134E-03
Ne III 2679.0 Å C=0.27E+22 3s(3)S- 3p(3)P	20000. 50000. 100000. 200000. 300000. 500000.	$\begin{array}{c} 0.369E\text{-}01\\ 0.523E\text{-}01\\ 0.594E\text{-}01\\ 0.654E\text{-}01\\ 0.677E\text{-}01\\ 0.696E\text{-}01 \end{array}$	-0.459E-02 -0.873E-02 -0.120E-01 -0.145E-01 -0.161E-01 -0.179E-01	$\begin{array}{c} 0.373 \pm -01 \\ 0.525 \pm -01 \\ 0.596 \pm -01 \\ 0.657 \pm -01 \\ 0.674 \pm -01 \\ 0.696 \pm -01 \end{array}$	-0.457E-02 -0.867E-02 -0.118E-01 -0.144E-01 -0.160E-01 -0.178E-01	$\begin{array}{c} 0.387\mathrm{E}{\text{-}01} \\ 0.532\mathrm{E}{\text{-}01} \\ 0.604\mathrm{E}{\text{-}01} \\ 0.659\mathrm{E}{\text{-}01} \\ 0.677\mathrm{E}{\text{-}01} \\ 0.691\mathrm{E}{\text{-}01} \end{array}$	-0.450E-02 -0.849E-02 -0.114E-01 -0.139E-01 -0.154E-01 -0.172E-01
Ne III 2413.8 Å C=0.21E+22 3p(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	*0.568E-01 *0.731E-01 0.819E-01 0.875E-01 0.894E-01 0.909E-01	-0.976E-03 -0.225E-02 -0.331E-02 -0.425E-02 -0.476E-02 -0.543E-02	*0.573E-01 *0.733E-01 0.822E-01 0.875E-01 0.895E-01 0.913E-01	-0.975E-03 -0.224E-02 -0.328E-02 -0.421E-02 -0.473E-02 -0.536E-02	*0.588E-01 *0.741E-01 *0.831E-01 0.879E-01 0.898E-01 0.913E-01	-0.971E-03 -0.221E-02 -0.320E-02 -0.407E-02 -0.456E-02 -0.519E-02
PERTURBER DEN	NSITY = 1.E +	-19 cm^{-3}					
Ne III 2593.1 Å C=0.26E+23 3s(5)S- 3p(5)P	20000. 50000. 100000. 200000. 300000. 500000.	*0.488 *0.544 *0.563 *0.580	-0.105 -0.133 -0.152 -0.168	*0.489 *0.545 *0.565 *0.583	-0.104 -0.132 -0.150 -0.167	*0.494 *0.548 *0.564 *0.578	-0.100 -0.127 -0.145 -0.162
Ne III 2162.6 Å C=0.17E+23 3p(5)P- 3d(5)D	20000. 50000. 100000. 200000. 300000. 500000.	*0.631 *0.652 *0.665	*0.711E-03 *0.964E-03 *0.130E-02	*0.634 *0.650 *0.667	*0.709E-03 *0.960E-03 *0.129E-02	*0.653 *0.667	*0.948E-03 *0.126E-02
Ne III 313.4 Å C=0.37E+21 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	0.541E-03 0.156E-02 0.250E-02 0.329E-02 0.374E-02 0.444E-02	0.781E-03 0.179E-02 0.249E-02 0.320E-02 0.362E-02 0.400E-02	0.545E-03 0.155E-02 0.249E-02 0.327E-02 0.370E-02 0.429E-02	$\begin{array}{c} 0.776\mathrm{E}\text{-}03\\ 0.177\mathrm{E}\text{-}02\\ 0.249\mathrm{E}\text{-}02\\ 0.315\mathrm{E}\text{-}02\\ 0.360\mathrm{E}\text{-}02\\ 0.396\mathrm{E}\text{-}02 \end{array}$	0.563E-03 0.155E-02 0.245E-02 0.317E-02 0.366E-02 0.414E-02	0.758E-03 0.172E-02 0.238E-02 0.304E-02 0.345E-02 0.386E-02
Ne III 251.3 Å C=0.23E+21 2p(4)(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	*0.600E-02 *0.661E-02 *0.682E-02 *0.699E-02	*0.868E-03 *0.109E-02 *0.124E-02 *0.139E-02	*0.600E-02 *0.662E-02 *0.681E-02 *0.700E-02	*0.859E-03 *0.108E-02 *0.122E-02 *0.139E-02	*0.665E-02 *0.682E-02 *0.695E-02	*0.104E-02 *0.118E-02 *0.133E-02
Ne III 2679.0 Å C=0.27E+23 3s(3)S- 3p(3)P	20000. 50000. 100000. 200000. 300000. 500000.	*0.586 *0.652 *0.676 *0.695	-0.112 -0.141 -0.161 -0.179	*0.589 *0.654 *0.674 *0.696	-0.111 -0.140 -0.160 -0.177	*0.594 *0.656 *0.676 *0.691	-0.106 -0.135 -0.153 -0.172

Table 4. (continued)							
PERTURBERS ARE: TRANSITION	T(K)	IONIZED M WIDTH (Å)	AGNESIUM SHIFT (Å)	IONIZED S WIDTH (Å)	SILICON SHIFT (Å)	IONIZED WIDTH (Å)	IRON SHIFT (Å)
Ne III 2413.8 Å C=0.21E+23 3p(3)P- 3d(3)D	20000. 50000. 100000. 200000. 300000. 500000.	*0.893 *0.908	-0.475E-01 -0.542E-01	*0.894 *0.912	-0.471E-01 -0.535E-01	*0.912	-0.517E-01
PERTURBER DE	NSITY = 1.E +	-20 cm^{-3}					
Ne III 313.4 Å C=0.37E+22 2p(4)(3)P- 3s(3)S	20000. 50000. 100000. 200000. 300000. 500000.	*0.444E-01	*0.396E-01	*0.429E-01	*0.392E-01		

calculations, not found in Moore (1971) and Bashkin and Stoner (1978) (or revised later) have been taken from Quinet, Palmeri and Biémont (1994) for Ne II and from Persson, Wahlströn and Jönsson (1991) for Ne III. Corresponding ionization potential for Ne III has been taken also from Persson, Wahlströn and Jönsson (1991). The results for 10 Ne II multiplets. for Stark broadening due to electron-, proton-, and ion broadening due to electron, proton, and ionized helium-impacts are shown in Table 1 for per-turber densities 10^{15} cm⁻³ - 10^{20} cm⁻³ and temper-atures from 5,000 up to 100,000 K. Electron-impact widths for the electron density of 10^{15} cm⁻³ are from Milosavljević, Dimitrijević and Djeniže (2001) and electron-impact shifts for the same electron density from Djeniže, Milosavljević and Dimitrijević (2001). In Table 2 are data for Stark broadening due to ionized magnesium-, ionized silicon-, and ionized ironimpacts for perturber densities 10^{17}cm^{-3} - 10^{19} cm^{-3} . The results for 6 Ne III multiplets, for Stark broadening due to electron-, proton-, and ionized helium-impacts are shown in Table 3 for perturber densities 10^{18} cm⁻³ - 10^{21} cm⁻³ and temperatures: 20,000 K; 50,000 K; 100,000 K; 200,000 K; 300,000 K and 500,000 K. In Table 4 are data for Stark broadening due to ionized magnesium-, ionized silicon-, and ionized iron-impacts. Data for electron-, proton- and ionized helium-impact broadening parameters for Ne II and Ne III spectral lines, for a perturber density of 10^{17}cm^{-3} , not existing in Tables 1 and 3 will be published in Dimitrijević (2002). Stark broadening parameters for densities lower than for tabulated values, are linear with perturber density. We also specify a parameter C (Dimitrijević and Sahal-Bréchot 1984), which gives an estimate for the maximum perturber density for which the line may be treated as isolated, when it is divided by the corresponding full width at half maximum. For each value given in Tables 1 - 4, the collision volume (V) multiplied by the perturber density (N) is much less than one and the impact approximation is valid (Sahal-Bréchot, 1969ab). Values for NV > 0.5 are not given and values for $0.1 < NV \le 0.5$ are denoted by an asterisk. When the impact approximation is not valid, the ion broadening contribution may be estimated by using quasistatic approach (Sahal-Bréchot 1991 or Griem 1974). In the region between where neither of these two approximations is valid, a unified type theory should be used. For example in Barnard, Cooper and Smith (1974), a simple analytical formula for such a case is given. The accuracy of the results obtained decreases when broadening by ion interactions becomes important.

The comparison of obtained results with experimental data for Ne II widths of Platiša, Dimitrijević and Konjević (1978); Pittman and Konjević (1986); Purić, Srećković, Labat and Ćirković (1987), Uzelac, Glenzer, Konjević, Hey and Kunze (1993), Blagojević, Popović and Konjević (1999) and del Val, Aparicio and Mar (2000), and with experimental data for Ne III of Konjević and Pittman (1987); Purić, Djeniže, Srećković, Ćuk, Labat and Platiša (1988); Uzelac, Glenzer, Konjević, Hey and Kunze (1993), Blagojević, Popović and Konjević (2000) is given in Milosavljević, Dimitrijević and Djeniže (2001), as well as the comparison with calculations of Ne II widths of Griem (1974); Uzelac, Glenzer, Konjević, Hey and Kunze (1993), and Ne III widths of Dimitrijević and Konjević (1981). The comparison with experimental data for Ne II shifts of Purić, Srećković, Labat and Ćirković (1987), and with calculations of Griem (1974), is given in Djeniže, Milosavljević and Dimitrijević (2001). The discussion of obtained results is also given in Dimitrijević (2002).

Acknowledgements – This work is a part of the project "Influence of collisional processes on astrophysical plasma lineshapes", supported by Ministry of Science, Technologies and Development of Serbia.

REFERENCES

- Barnard, A.J., Cooper, J., Smith, E.W.: 1974, J. Quant. Spectrosc. Radiative Transfer, 14, 1025.
- Bashkin, S., Stoner, J.O.Jr.: 1978, "Atomic Energy Levels and Grotrian Diagrams", Vol. 2, North Holland, Amsterdam.
- Blagojević, B., Popović, M.V. and Konjević, N.: 1999, *Physica Scripta*, **59**, 374.
- Blagojević, B., Popović, M.V. and Konjević, N.: 2000, J. Quant. Spectrosc. Radiative Transfer, Konjević, N.: **67**. 9.
- del Val, J.A., Aparicio, J.A., and Mar, S.: 2000, Astrophys. J., 536, 998.
- Dimitrijević, M.S.: 2002, Zh. Prikl. Spektrosk. submitted.
- Dimitrijević, M.S., and Konjević, N.: 1981, in: Spectral Line Shapes, ed. B. Wende, New york, W. de Gruyter, 211.
- Dimitrijević, M.S. and Sahal–Bréchot,S.: 1984, J. Quant. Spectrosc. Radiat. Transfer, **31**, 301.
- Dimitrijević, M.S., Sahal-Bréchot, S.: 1995a, Physica Šcripta, **52**, 41.
- Dimitrijević, M.S., and Sahal–Bréchot, S.: 1995b,
- Astron. Astrophys. Suppl. Series, 109, 551. Dimitrijević, M.S., Sahal-Bréchot, S., Bommier, V.: 1991, Astron. Astrophys. Suppl. Series 89, 581.
- Djeniže, S., Milosavljević, V. and Dimitrijević, M. S.: 2001, Astron. Astrophys., 382, 359.
- Fleurier, C., Sahal-Bréchot, S., Chapelle, J.: 1977, J. Quant. Spectrosc. Radiative Transfer, 17, 595.

- Griem, H.R.: 1974, Spectral Line Broadening by Plasmas, Academic Press, New York.
- Konjević, N. and Pittman, T.L.: 1987, J. Quant. Spectrosc. Radiat. Transfer, **37**, 311.
- Milosavljević, V., Dimitrijević, M.S. and Djeniže, S.: 2001, Astrophys. J. Suppl. Series, 135, 115.
- Moore, C.É.: 1971, Atomic Energy Levels, Vol. I, Nat. Stand. Ref. Data Ser., 35, NBS, Washington.
- Persson, W., Wahlströn, C. G., and Jönsson, I.: 1991, Phys. Rev. A, 43, 4791.
- Pittman, T.L., and Konjević, N.: 1986, J. Quant. Spectrosc. Radiat. Transfer, 35, 247.
- Platiša, M., Dimitrijević, M.S. and Konjević, N.: 1978, Astron. Astrophys., 67, 103.
- Purić, J., Djeniže, S., Srećković, A., Ćuk, A., Labat, J. and Platiša, M.: 1988, Z. Phys. D, 8, 343.
- Purić, J., Djeniže, S., Srećković, A., Labat, J. and Ćirković, Lj.: 1987, Phys. Rev. A, 35, 2111.
- Quinet, P., Palmeri, P. and Biémont, E.: 1994, Physica Scripta, 49, 436.
- Sahal–Bréchot, S.: 1969a, Astron. Astrophys., 1, 91.
- Sahal-Bréchot, S.: 1969b, Astron. Astrophys., 2, 322.
- Sahal-Bréchot, S.: 1974, Astron. Astrophys., 35, 321.
- Sahal-Bréchot, S.: 1991, Astron. Astrophys. 245, 322.
- Thomas, J.R. and Neupert, W.M.: 1994, Astrophys. J. Suppl. Series, **91**, 461.
- Trimble, V.: 1991, Astron. Astrophys. Rev., 3, 1.
- Uzelac, N.I., Glenzer, S., Konjević, N., Hey, J.D. and Kunze, H.J.: 1993, *Phys. Rev. E*, **47**, 3623.

ТАБЕЛЕ ПАРАМЕТАРА ШТАРКОВОГ ШИРЕЊА СПЕКТРАЛНИХ ЛИНИЈА Ne II И Ne III

М. С. Димитријевић

Астрономска опсерваторија, Волгина 7, 11160 Београд-74, Србија, Југославија

УДК 52-355.3 Претходно саопштење

Користећи семикласичан прилаз, израчунате су ширине и помераји спектралних линија, проузроковани сударима са електронима, протонима, као и јонима хелијума, магнезијума, силицијума и гвожђа за 10 мултиплета Ne II и 6 мултиплета Ne III. Резултати су дати у функцији температуре и концентрације пертурбера.