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SUMMARY: By varying a particular form of the generalised Schuster density

law (the exponent in the denominator equal to 3
2 ) the authors look for a suitable

substitution for King’s density formula usually applied to star clusters and dwarf
galaxies. The authors find expressions yielding almost identical density values as
King’s formula, but from the mathematical point of view significantly more simple
for use.

1. INTRODUCTION

As well known, King (1962) proposed a for-
mula describing the mass distribution in stellar sys-
tems like open clusters, globular clusters and dwarf
galaxies. Since that time this formula has been am-
ply applied for the purpose of fitting the star counts
in these systems (e. g. Meylan, 1988). Though these
fits can be considered as successful, the application
of King’s formula presents a serious difficulty since it
permits no analytical solution of the Poisson equa-
tion. On the other hand, in some applications, for
example the orbit calculation, it is desirable to have
an analytical expression at least for the gravitation-
field strength. Therefore, the decision of the present
authors is to look for a more simple density formula
yielding an almost equally qualitative fit to the ob-
servations. In our opinion the generalized Schuster
density law (e. g. Lohmann, 1964) offers such a pos-
sibility, especially bearing in mind that recently one
of us (Ninković, 1998) demonstrated that King’s den-
sity law appears as an asymptotical case of the gen-
eralized Schuster density law with β = 3

2 (β the ex-
ponent in the denominator); consequently both yield
an infinite total mass if integrated to infinity. Like
King’s formula this special case of the generalised

Schuster density law has also three parameters so
that any comparison (local or global) for equal cen-
tral density and characteristic radius (called also core
radius) becomes simple.

2. FORMALISM

The particular form of the generalized Schus-
ter density law mentioned in the preceding Section
is

ρ(r) =
ρ(0)

[1 + (r/rc)2]3/2
, r ≤ rl ;

ρ(r) = 0 , r > rl , rc = const .

This expression is in Anglo-Saxon literature usually
referred to as the modified Hubble-Reynolds formula
(e. g. Binney and Tremaine, 1987 - p. 39). Since
in King’s formula the density vanishes at the bound-
ary (r = rl, rl limiting radius, i. e. tidal radius in
King’s original terminology), our first modification
will be to introduce an additional term producing
the same effect in our case. Besides, we shall treat
King’s formula as if it represented exactly the mass
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distribution in the types of stellar systems mentioned
above. Therefore, for the purpose of achieving a fit
as good as possible we introduce other modifications
to have finally

ρ = K
(
1 − x2

x2
l

)i[ 1
(1 + x2)3/2

− 1
(1 + x2

l )3/2

]
, (1)

where K is a constant (obviously, it has the same
dimension as the density), x is the dimensionless ra-
dius - x = r/rc, also xl = rl/rc - whereas i is a non
negative integer. With regard to the purpose of the
present paper the values of interest are i = 0, i = 1
and i = 2. The case i = 0 is the most simple and
it corresponds to the first modification mentioned
above since the second term in the brackets is what
enables the density to reach zero at the boundary.
By using (1) it is possible to obtain analytically the
mass within a given radius and also the potential,
but the integral yielding the total potential energy
of the system is not obtainable analytically (e. g.
Ninković, 1994). As for the potential we use the fol-
lowing general expression

Π(r) =
GM(r)

r
+ 4πG

∫ rl

r

ρ(r)r dr ;

here G is the gravitation constant and M(r) is the
mass inside a given radius r. The corresponding ex-
pressions are given in Appendix.

3. RESULTS

As already said in the Introduction, King’s
formula and (1) can be compared locally and glob-
ally. In the former case the comparison is performed
through the density amounts. As for the latter one,
one compares the resulting total masses. In order to
make such comparisons more clear we shall rewrite
King’s density formula followed by a corresponding
total-mass expression. The volume-density expres-
sion as given by King (formulae (27)-(29) of his pa-
per) is

ρ =
k

πrc(1 + x2
l )3/2

1
z2

[1
z

arccos z − (1 − z2)1/2
]

,

z =
[1 + x2

1 + x2
l

]1/2

.

k is a constant with surface-density dimensions. It
can be easily substituted by the central density by
means of the following expression

k = πrcρ(0)
[
arccos

1
(1 + x2

l )1/2
− xl

1 + x2
l

]−1

. (2)

As already said, the integration of the density given
by this formula yields no analytical expression for
the mass inside an arbitrary radius, i. e. total mass.

However, the total mass can be calculated by using
the corresponding surface density. The amount ob-
tained in this way is

M = πkr2
cf(xl) ,

where for k one should substitute expression (2),
whereas f(xl) is a (dimensionless) function of xl gi-
ven by

f(xl) = ln q +
4

q1/2
+

x2
l

q
− 4 ,

q = 1 + x2
l .

Now one can carry out the envisaged com-
parisons. Both distributions are characterized by
three parameters: ρ(0), rc and xl. Therefore, any
comparison is meaningful if these three parameters
have the same values. In the local comparisons rc will
be used as distance unit, and ρ(0) as density unit re-
spectively. In the global comparisons the mass will
be expressed in the units of ρ(0)r3

c . According to the
existing evidence values less than 1 for xl are mean-
ingless; mass distributions within open clusters (e.
g. King, 1962) and dwarf galaxies (e. g. Lake,1990;
Pryor and Kormendy, 1990) are fitted with xl ∼ 100,
whereas in the case of globular ones the correspond-
ing order of magnitude is 101 (e. g. Kukarkin and
Kireeva, 1979). Therefore, the present comparisons
will have a lower limit xl = 1.

The least agreement is achieved in the case
i = 0. In local comparisons the fit is very good at
x ≤ 1, especially for high xl (say xl ≥ 50 ). However,
with higher x it becomes worse. In general the best
illustration of the agreement is realised through the
global comparison. Formula (1) - i = 0 - yields sys-
tematically a higher total mass than King’s formula.
The highest mass ratio is with xl = 1 (1.47), as xl in-
creases the mass ratio decreases to attain about 1.16
at xl = 1000. Of course, as already said above, when
xl tends to infinity the mass ratio tends to 1 (also
valid for any other i). The dependence of the mass
ratio on xl is presented in Fig. 1.

Fig. 1. The ratio of the total masses - distribution
(1), i = 0, according to King’s formula - as function
of xl; the mass unit is ρ(0)r3

c .
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The case i = 1 yields a better agreement. Dif-
ferences in the density values are very often of the
order of 10−5. As for the global agreement, the mass
ratio is about 0.91 at xl = 1, to attain about 1.23 at
xl = 10. Afterwards it gradually decreases (for ex-
ample if xl is 1000 it is about 1.1). This agreement
is presented in Fig. 2.

Fig. 2. The ratio of the total masses - distribution
(1), i = 1, according to King’s formula - as function
of xl; the mass unit is ρ(0)r3

c .

The last case i = 2 yields also a good agree-
ment. This time the total mass is systematically
lower than that emanating from King’s formula. The
mass ratio is especially low at xl = 1 - about 0.2; it
increases for higher xl values (for example about 0.73
at xl = 10) to become close to one at xl sufficiently
high (say at xl = 50 it is about 0.95, at xl = 100
about 0.97, at xl = 1000 about 0.99, etc); Fig. 3
presents the agreement. As for the local compar-
isons, the differences in the density values are also
very often of the order of 10−5.

Fig. 3. The ratio of the total masses - distribution
(1), i = 2, according to King’s formula - as function
of xl; the mass unit is ρ(0)r3

c .

4. DISCUSSION AND CONCLUSIONS

It is established that the mass distribution ex-
pressed by means of (1) fits well that resulting from
King’s formula. As a general conclusion one may say
that out of the three special cases of (1) examined

here two of them - i = 1 and i = 2 - yield especially
good agreements with King’s formula. In particular,
the former case yields an especially good agreement
for about xl ≤ 10, whereas the latter one yields an
especially good agreement for higher values of xl.
In view of what has been said above concerning the
application of King’s formula to concrete stellar sys-
tems the case i = 1 (formula (1)) could be suitable
for application to open clusters and dwarf galaxies,
whereas the other one could be applicable to globular
clusters.
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APPENDIX

I Mass within a given radius

i) case i=0

M(x) = 4πKr3
cI ,

I = I1 + I2 ,

I1 = I0− sinϕ , I0 = ln | tan
(ϕ

2
+

π

4
)| , ϕ = arctanx

I2 = − 1
(1 + x2

l )3/2

x3

3
.

ii) case i=1

M(x) = 4πKr3
cI ,

I = I1 + I2 + I3 + I4 ,

I1 = I0− sinϕ , I0 = ln | tan
(ϕ

2
+

π

4
)| , ϕ = arctanx

I2 = − 1
(1 + x2

l )3/2

x3

3
,
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I3 = − 1
x2

l

( sin ϕ

2 cos2 ϕ
− 3

2
I0 + sin ϕ

)
,

I4 =
1

(1 + x2
l )3/2

1
x2

l

x5

5
.

iii) case i=2

M(x) = 4πKr3
cI ,

I = I1 + I2 + I3 + I4 + I5 + I6 ,

I1 = I0− sinϕ , I0 = ln | tan
(ϕ

2
+

π

4
)| , ϕ = arctanx

I2 = − 1
(1 + x2

l )3/2

x3

3
,

I3 = − 2
x2

l

( sin ϕ

2 cos2 ϕ
− 3

2
I0 + sin ϕ

)
,

I4 =
2

(1 + x2
l )3/2

1
x2

l

x5

5
,

I5 =
1
x4

l

( sinϕ

4 cos4 ϕ
− 9

8
sinϕ

cos2 ϕ
+

15
8

I0 − sinϕ
)

,

I6 = − 1
(1 + x2

l )3/2

1
x4

l

x7

7
.

II Potential

i) case i=0

Π(x) =
GM(x)

rcx
+ 4πGKr2

cJ ,

J = J1 + J2 ,

J1 = cosϕ−cosϕ0 , ϕ = arctanx , ϕ0 = arctanxl ,

J2 = −1
2

1
(1 + x2

l )3/2
(x2

l − x2) .

ii) case i=1

Π(x) =
GM(x)

rcx
+ 4πGKr2

cJ ,

J = J1 + J2 + J3 + J4 ,

J1 = cosϕ−cosϕ0 , ϕ = arctanx , ϕ0 = arctanxl ,

J2 = −1
2

1
(1 + x2

l )3/2
(x2

l − x2) ,

J3 = − 1
x2

l

[( 1
cosϕ0

− 1
cosϕ

) − (cosϕ − cosϕ0)
]

,

J4 =
1
4

1
x2

l

1
(1 + x2

l )3/2
(x4

l − x4) .

iii) case i=2

Π(x) =
GM(x)

rcx
+ 4πGKr2

cJ ,

J = J1 + J2 + J3 + J4 + J5 + J6 ,

J1 = cosϕ−cosϕ0 , ϕ = arctanx , ϕ0 = arctanxl ,

J2 = −1
2

1
(1 + x2

l )3/2
(x2

l − x2) ,

J3 = − 2
x2

l

[( 1
cosϕ0

− 1
cosϕ

) − (cosϕ − cosϕ0)
]

,

J4 =
2
4

1
x2

l

1
(1 + x2

l )3/2
(x4

l − x4) .

J5 =
1
x4

l

[1
3
( 1
cos3 ϕ0

− 1
cos3 ϕ

) − 2
( 1
cosϕ0

− 1
cosϕ

)

+ (cosϕ − cosϕ0)
]

,

J6 = −1
6

1
x4

l

1
(1 + x2

l )3/2
(x6

l − x6) .
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UOPXTENI XUSTEROV ZAKON I KINGOVA FORMULA

V. �ivkov i S. Ninkovi�
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Originalni nauqni rad

Variraǌem jednog konkretnog oblika uo-
pxtenog Xusterovog zakona (izlo�ilac u ime-
niocu iznosi 3

2) autori tra�e pogodnu zamenu
za Kingovu formulu za gustinu koja se obiqno

koristi kod zvezdanih jata i patuǉastih ga-
laksija. Autori pronalaze izraze koji daju
skoro iste vrednosti gustine kao i Kingova
formula, ali su sa matematiqke taqke gledi-
xta znatno jednostavniji za rad.
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